探究问题:(1)方法感悟:如图①,在正方形ABCD中,点E,F分别为DC,BC边上的点,且满足∠EAF=45°,连

探究问题:(1)方法感悟:如图①,在正方形ABCD中,点E,F分别为DC,BC边上的点,且满足∠EAF=45°,连接EF,求证DE+BF=EF.感悟解题方法,并完成下列填... 探究问题:(1)方法感悟:如图①,在正方形ABCD中,点E,F分别为DC,BC边上的点,且满足∠EAF=45°,连接EF,求证DE+BF=EF.感悟解题方法,并完成下列填空:将△ADE绕点A顺时针旋转90°得到△ABG,此时AB与AD重合,由旋转可得:AB=AD,BG=DE,∠1=∠2,∠ABG=∠D=90°,∴∠ABG+∠ABF=90°+90°=180°,因此,点G,B,F在同一条直线上.∵∠EAF=45°∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.∵∠1=∠2,∴∠1+∠3=45°.即∠GAF=∠______.又AG=AE,AF=AF∴△GAF≌______.∴______=EF,故DE+BF=EF.(2)方法迁移:如图②,将Rt△ABC沿斜边翻折得到△ADC,点E,F分别为DC,BC边上的点,且∠EAF=12∠DAB.试猜想DE,BF,EF之间有何数量关系,并证明你的猜想.(3)问题拓展:如图③,在四边形ABCD中,AB=AD,E,F分别为DC,BC上的点,满足∠EAF=12∠DAB,试猜想当∠B与∠D满足什么关系时,可使得DE+BF=EF.请直接写出你的猜想(不必说明理由). 展开
 我来答
庹清昶3r
推荐于2017-10-13 · TA获得超过110个赞
知道答主
回答量:129
采纳率:75%
帮助的人:61.5万
展开全部
(1)根据等量代换得出∠GAF=∠FAE,
利用SAS得出△GAF≌△EAF,
∴GF=EF,
故答案为:FAE;△EAF;GF;

(2)证明:延长CF,作∠4=∠1,
∵将Rt△ABC沿斜边翻折得到△ADC,点E,F分别为DC,BC边上的点,且∠EAF=
1
2
∠DAB,
∴∠1+∠2=∠3+∠5,
∠2+∠3=∠1+∠5,
∵∠4=∠1,
∴∠2+∠3=∠4+∠5,
∴∠GAF=∠FAE,
∵在△AGB和△AED中,
∠4=∠1
AB=AD
∠ABG=∠ADE

∴△AGB≌△AED(ASA),
∴AG=AE,BG=DE,
∵在△AGF和△AEF中,
AG=AE
∠GAF=∠EAF
AF=AF

∴△AGF≌△AEF(SAS),
∴GF=EF,
∴DE+BF=EF;

(3)当∠B与∠D满足∠B+∠D=180°时,可使得DE+BF=EF.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式