数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,点E是边BC的中点.∠AEF=90°,且EF交正方形
数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,点E是边BC的中点.∠AEF=90°,且EF交正方形外角∠DCG的平分线CF于点F,求证:AE=EF.经过思考...
数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,点E是边BC的中点.∠AEF=90°,且EF交正方形外角∠DCG的平分线CF于点F,求证:AE=EF.
经过思考,小明展示了一种正确的解题思路:取AB的中点M,连接ME,则AM=EC,易证△AME≌△ECF,所以AE=EF.
在此基础上,同学们作了进一步的研究:
(1)小颖提出:如图2,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;
(2)小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程; 展开
经过思考,小明展示了一种正确的解题思路:取AB的中点M,连接ME,则AM=EC,易证△AME≌△ECF,所以AE=EF.
在此基础上,同学们作了进一步的研究:
(1)小颖提出:如图2,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;
(2)小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程; 展开
9个回答
展开全部
.解:(1)正确.
证明:在AB上取一点M,使AM=EC,连接ME.
∴BM=BE.∴∠BME=45°.∴∠AME=135°.
∵CF是外角平分线,
∴∠DCF=45°.∴∠ECF=135°.
∴∠AME=∠ECF.
∵∠AEB+∠BAE=90°,∠AEB+CEF=90°,
∴∠BAE=∠CEF.
∴△AME≌△BCF(ASA).
∴AE=EF.
(2)正确.
证明:在BA的延长线上取一点N,使AN=CE,连接NE.
∴BN=BE.
∴∠N=∠FCE=45°.
四边形ABCD是正方形,
∴AD‖BE.
∴∠DAE=∠BEA.
∴∠NAE=∠CEF.
∴△ANE≌△ECF(ASA).
∴AE=EF.
证明:在AB上取一点M,使AM=EC,连接ME.
∴BM=BE.∴∠BME=45°.∴∠AME=135°.
∵CF是外角平分线,
∴∠DCF=45°.∴∠ECF=135°.
∴∠AME=∠ECF.
∵∠AEB+∠BAE=90°,∠AEB+CEF=90°,
∴∠BAE=∠CEF.
∴△AME≌△BCF(ASA).
∴AE=EF.
(2)正确.
证明:在BA的延长线上取一点N,使AN=CE,连接NE.
∴BN=BE.
∴∠N=∠FCE=45°.
四边形ABCD是正方形,
∴AD‖BE.
∴∠DAE=∠BEA.
∴∠NAE=∠CEF.
∴△ANE≌△ECF(ASA).
∴AE=EF.
参考资料: http://zhidao.baidu.com/question/198873770.html
展开全部
1.在AB上取一点H 连接BH 使BE=BH
因为ABCD是正方形
所以AH=EC,∠AHE=135°
CF平分∠DCG
所以∠ECF=135°
AE⊥EF
所以∠FEC+∠AEB=90°
∠BAE+∠AEB=90°
所以∠BAE=∠FEC
这样在ΔAEH与ΔFEC中
∠AHE=∠ECF
∠BAE=∠FEC
AH=EC
故ΔAEP≌ΔFEC
2.过点E作EM垂直BE交CF于点M,
因∠MCE=45度,所以EM=CE
因∠CEM=∠AEF=90度,所以∠CEA=∠MEF
而∠ACE=∠FME=135度
所以ΔACE≌ΔFME
所以AE=EF
所以AE=EF
因为ABCD是正方形
所以AH=EC,∠AHE=135°
CF平分∠DCG
所以∠ECF=135°
AE⊥EF
所以∠FEC+∠AEB=90°
∠BAE+∠AEB=90°
所以∠BAE=∠FEC
这样在ΔAEH与ΔFEC中
∠AHE=∠ECF
∠BAE=∠FEC
AH=EC
故ΔAEP≌ΔFEC
2.过点E作EM垂直BE交CF于点M,
因∠MCE=45度,所以EM=CE
因∠CEM=∠AEF=90度,所以∠CEA=∠MEF
而∠ACE=∠FME=135度
所以ΔACE≌ΔFME
所以AE=EF
所以AE=EF
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
是不是数学评价手册上的?
证明:在AB上取一点M,使AM=EC,连接ME.
∴BM=BE.∴∠BME=45°.∴∠AME=135°.
∵CF是外角平分线,
∴∠DCF=45°.∴∠ECF=135°.
∴∠AME=∠ECF.
∵∠AEB+∠BAE=90°,∠AEB+CEF=90°,
∴∠BAE=∠CEF.
∴△AME≌△BCF(ASA).
∴AE=EF.
(2)正确.
证明:在BA的延长线上取一点N,使AN=CE,连接NE.
∴BN=BE.
∴∠N=∠FCE=45°.
四边形ABCD是正方形,
∴AD‖BE.
∴∠DAE=∠BEA.
∴∠NAE=∠CEF.
∴△ANE≌△ECF(ASA).
∴AE=EF.
证明:在AB上取一点M,使AM=EC,连接ME.
∴BM=BE.∴∠BME=45°.∴∠AME=135°.
∵CF是外角平分线,
∴∠DCF=45°.∴∠ECF=135°.
∴∠AME=∠ECF.
∵∠AEB+∠BAE=90°,∠AEB+CEF=90°,
∴∠BAE=∠CEF.
∴△AME≌△BCF(ASA).
∴AE=EF.
(2)正确.
证明:在BA的延长线上取一点N,使AN=CE,连接NE.
∴BN=BE.
∴∠N=∠FCE=45°.
四边形ABCD是正方形,
∴AD‖BE.
∴∠DAE=∠BEA.
∴∠NAE=∠CEF.
∴△ANE≌△ECF(ASA).
∴AE=EF.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2012-09-05
展开全部
解:(1)正确.
证明:在AB上取一点M,使AM=EC,连接ME.
∴BM=BE.∴∠BME=45°.∴∠AME=135°.
∵CF是外角平分线,
∴∠DCF=45°.∴∠ECF=135°.
∴∠AME=∠ECF.
∵∠AEB+∠BAE=90°,∠AEB+CEF=90°,
∴∠BAE=∠CEF.
∴△AME≌△BCF(ASA).
∴AE=EF.
(2)正确.
证明:在BA的延长线上取一点N,使AN=CE,连接NE.
∴BN=BE.
∴∠N=∠FCE=45°.
四边形ABCD是正方形,
∴AD‖BE.
∴∠DAE=∠BEA.
∴∠NAE=∠CEF.
∴△ANE≌△ECF(ASA).
∴AE=EF.
证明:在AB上取一点M,使AM=EC,连接ME.
∴BM=BE.∴∠BME=45°.∴∠AME=135°.
∵CF是外角平分线,
∴∠DCF=45°.∴∠ECF=135°.
∴∠AME=∠ECF.
∵∠AEB+∠BAE=90°,∠AEB+CEF=90°,
∴∠BAE=∠CEF.
∴△AME≌△BCF(ASA).
∴AE=EF.
(2)正确.
证明:在BA的延长线上取一点N,使AN=CE,连接NE.
∴BN=BE.
∴∠N=∠FCE=45°.
四边形ABCD是正方形,
∴AD‖BE.
∴∠DAE=∠BEA.
∴∠NAE=∠CEF.
∴△ANE≌△ECF(ASA).
∴AE=EF.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
哈,这是我今天刚做的一道题啊,正在这里求解呢~~~
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
真复杂 ···························
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询