复数z=a+bi(a,b∈R),且|z|=1,则μ=|z^2-z+1|的最大值是
1个回答
2011-08-12
展开全部
z=a+bi(a,b∈R),且|z|=1, a²+b²=1 -1<=a<1
z^2-z+1=a²-b²+2abi-a-bi+1=(a²-b²-a+1)+(2ab-b)i
μ=(a²-b²-a+1)²+(2ab-b)²=(a²-a-1+a²+1)²+b²(2a-1)²
=(2a²-a)²+b²(2a-1)²=(a²+b²)(2a-1)²
=(2a-1)²
0<=(2a-1)²<=(-1*2-1)² μ<=3
z^2-z+1=a²-b²+2abi-a-bi+1=(a²-b²-a+1)+(2ab-b)i
μ=(a²-b²-a+1)²+(2ab-b)²=(a²-a-1+a²+1)²+b²(2a-1)²
=(2a²-a)²+b²(2a-1)²=(a²+b²)(2a-1)²
=(2a-1)²
0<=(2a-1)²<=(-1*2-1)² μ<=3
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询