
在三角形中,内角A,B,C,的对边分别为a,b,c,设S为三角形ABC的面积,满足S=根号3/4(a^2+b^2-c^2)
2个回答
展开全部
根据余弦定理
cosC=(a²+b²-c²)/2ab ①
S=1/2absinC
所以
sinC=2S/ab=√3(a²+b²-c²)/2ab ②
①²+②²=1
化简得
a²+b²-c²=ab ③
将③代入①得
cosC=1/2
C为三角形内角
所以C=60°
A+B=120°
2. sinA+sinB=sinA+sin(120°-A)=2sin60°cos(A-60°)=√3cos(A-60°)
当A=60°时,cos(A-60°)=1,取最大值 为√3
cosC=(a²+b²-c²)/2ab ①
S=1/2absinC
所以
sinC=2S/ab=√3(a²+b²-c²)/2ab ②
①²+②²=1
化简得
a²+b²-c²=ab ③
将③代入①得
cosC=1/2
C为三角形内角
所以C=60°
A+B=120°
2. sinA+sinB=sinA+sin(120°-A)=2sin60°cos(A-60°)=√3cos(A-60°)
当A=60°时,cos(A-60°)=1,取最大值 为√3
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询