几何题和答案要40道
1个回答
展开全部
1.如图所示,一只老鼠沿着长方形逃跑,一只花猫同时从A点朝另一个方向沿着长方形去捕捉,结果在距B点30cm的C点处捉住了老鼠。已知老鼠与猫的速度之比为11:14,求长方形的周长。
回答人的补充 2009-06-22 20:02
设周长为X.则A到B的距离为X/2;X/2-30:X/2+30=11:14X=500 cm
回答人的补充 2009-06-22 20:03
如图,梯形ABCD中,AD平行BC,∠A=2∠C,AD=10cm,BC=25cm,求AB的长
回答人的补充 2009-06-22 20:08
解:过点A作AB∥DE。∵AB∥DE,AD∥BC∴四边形ADEB是平信四边形∴AB=DE,AD=BE∵∠DEB是三角形DEC的外角∴∠DEB=∠CDE+∠C∵四边形ADEB是平信四边形∴∠A=∠DEB又∵∠A=2∠C,∠DEB=∠CDE+∠C∴∠CDE+∠C∴DE=CE∵AD=10,BC=25,AD=BE∴CE=15=DE=AB
回答人的补充 2009-06-22 20:09
如图:等腰三角形ABCD中,AD平行BC,BD⊥DC,且∠1=∠2,梯形的周长为30CM,求AB、BC的长。
回答人的补充 2009-06-22 20:17
因为等腰梯形ABCD,所以角ABC=角C,AB=CD,AD//BC所以角ADB=角2,又角1=角2,所以角1=角2=角ADB,而角ABC=角C=角1+角2且角2=角ADB所以角ADB+角C=90度,所以有角1+角2+角ADB=90度所以角2=30度因此BC=2CD=2AB所以周长为5AB=30所以AB=6,BC=12
回答人的补充 2009-06-22 20:18
如图:正方形ABCD的边长为4,G、F分别在DC、CB边上,DG=GC=2,CF=1.求证:∠1=∠2(要两种解法 提示一种思路:连接并延长FG交AD的延长线于K)
回答人的补充 2009-06-22 20:23
1.连接并延长FG交AD的延长线于K∠KGD=∠FGC ∠GDK=∠GCF BG=CG △CGF≌△DGK GF=GKAB=4 BF=3 AF=5 AB=4+1=5 AB=AF AG=AG △AGF≌△AGK ∠1=∠2
2.延长AC交BC延长线与E∠ADG=∠ECG ∠AGD=∠EGC DG=GC △ADG≌△EGF ∠1=∠E AD=CEAF=5 EF=1+4=5 ∠2=∠E 所以∠1=∠2
回答人的补充 2009-06-22 20:25
如图,四边形ABCD是平行四边形,BE平行DF,分别交AC于E、F连接ED、BF 求证∠1=∠2
答案:证三角形BFE 全等 三角形DEF。 因为FE=EF,角BEF=90度=角DFE,DF=BE(全等三角形的对应高相等)。 所以三角形BFE 全等 三角形DEF。 所以∠1等于∠2(全等三角形对应角相等)
就给这么多吧~~N累~!!
回答人的补充 2009-06-22 20:02
设周长为X.则A到B的距离为X/2;X/2-30:X/2+30=11:14X=500 cm
回答人的补充 2009-06-22 20:03
如图,梯形ABCD中,AD平行BC,∠A=2∠C,AD=10cm,BC=25cm,求AB的长
回答人的补充 2009-06-22 20:08
解:过点A作AB∥DE。∵AB∥DE,AD∥BC∴四边形ADEB是平信四边形∴AB=DE,AD=BE∵∠DEB是三角形DEC的外角∴∠DEB=∠CDE+∠C∵四边形ADEB是平信四边形∴∠A=∠DEB又∵∠A=2∠C,∠DEB=∠CDE+∠C∴∠CDE+∠C∴DE=CE∵AD=10,BC=25,AD=BE∴CE=15=DE=AB
回答人的补充 2009-06-22 20:09
如图:等腰三角形ABCD中,AD平行BC,BD⊥DC,且∠1=∠2,梯形的周长为30CM,求AB、BC的长。
回答人的补充 2009-06-22 20:17
因为等腰梯形ABCD,所以角ABC=角C,AB=CD,AD//BC所以角ADB=角2,又角1=角2,所以角1=角2=角ADB,而角ABC=角C=角1+角2且角2=角ADB所以角ADB+角C=90度,所以有角1+角2+角ADB=90度所以角2=30度因此BC=2CD=2AB所以周长为5AB=30所以AB=6,BC=12
回答人的补充 2009-06-22 20:18
如图:正方形ABCD的边长为4,G、F分别在DC、CB边上,DG=GC=2,CF=1.求证:∠1=∠2(要两种解法 提示一种思路:连接并延长FG交AD的延长线于K)
回答人的补充 2009-06-22 20:23
1.连接并延长FG交AD的延长线于K∠KGD=∠FGC ∠GDK=∠GCF BG=CG △CGF≌△DGK GF=GKAB=4 BF=3 AF=5 AB=4+1=5 AB=AF AG=AG △AGF≌△AGK ∠1=∠2
2.延长AC交BC延长线与E∠ADG=∠ECG ∠AGD=∠EGC DG=GC △ADG≌△EGF ∠1=∠E AD=CEAF=5 EF=1+4=5 ∠2=∠E 所以∠1=∠2
回答人的补充 2009-06-22 20:25
如图,四边形ABCD是平行四边形,BE平行DF,分别交AC于E、F连接ED、BF 求证∠1=∠2
答案:证三角形BFE 全等 三角形DEF。 因为FE=EF,角BEF=90度=角DFE,DF=BE(全等三角形的对应高相等)。 所以三角形BFE 全等 三角形DEF。 所以∠1等于∠2(全等三角形对应角相等)
就给这么多吧~~N累~!!
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询