3个回答
展开全部
解:作D关于AE的对称点D′,再过D′作D′P′⊥AD于P′,
∵DD′⊥AE,
∴∠AFD=∠AFD′,
∵AF=AF,∠DAE=∠CAE,
∴△DAF≌△D′AF,
∴D′是D关于AE的对称点,AD′=AD=4,
∴D′P′即为DQ+PQ的最小值,
∵四边形ABCD是正方形
∴∠DAD′=45°,
∴AP′=P′D′,
∴在Rt△AP′D′中,
2P′D′2=AD′2,即2P′D′2=16,
∴P′D′=2√2 ,即DQ+PQ的最小值为2√2
∵DD′⊥AE,
∴∠AFD=∠AFD′,
∵AF=AF,∠DAE=∠CAE,
∴△DAF≌△D′AF,
∴D′是D关于AE的对称点,AD′=AD=4,
∴D′P′即为DQ+PQ的最小值,
∵四边形ABCD是正方形
∴∠DAD′=45°,
∴AP′=P′D′,
∴在Rt△AP′D′中,
2P′D′2=AD′2,即2P′D′2=16,
∴P′D′=2√2 ,即DQ+PQ的最小值为2√2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
DQ+PQ最小值为1.414,及根号2
解法,可在AC上找一点M,让AP=AM,此时由于角MAQ和角PAP一样大,并且边AP=AM切AQ=AQ,证明三角形APQ和AMQ全等,及PQ=MQ。再看三角形DQM,MQ+DQ>DM,当Q在移动,且Q移动到DM上时候,MQ+DQ=DM此时的值最小,根据相关数据可得出值为1.414
解法,可在AC上找一点M,让AP=AM,此时由于角MAQ和角PAP一样大,并且边AP=AM切AQ=AQ,证明三角形APQ和AMQ全等,及PQ=MQ。再看三角形DQM,MQ+DQ>DM,当Q在移动,且Q移动到DM上时候,MQ+DQ=DM此时的值最小,根据相关数据可得出值为1.414
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询