某超市销售有甲乙来年各种商品,甲商品每件进价10元,售价15元;乙商品每件进价30元,售价40元。
(1)若该超市同时一次购进甲、乙两种商品攻80件,恰好用去1600元,求能购进甲、乙两种商品个多少件?(2)该超市为使甲、乙两种商品共80件的总利润(利润=售价-进价)不...
(1)若该超市同时一次购进甲、乙两种商品攻80件,恰好用去1600元,求能购进甲、乙两种商品个多少件?
(2)该超市为使甲、乙两种商品共80件的总利润(利润=售价-进价)不少于600元,但又不超过610元,如何进货超市可获得最大利润? 展开
(2)该超市为使甲、乙两种商品共80件的总利润(利润=售价-进价)不少于600元,但又不超过610元,如何进货超市可获得最大利润? 展开
5个回答
展开全部
设购进甲种商品 x 件,则购进乙种商品 80-x 件。
(1)
购进甲、乙两种商品一共需要 10x+30(80-x) 元,
可列方程:10x+30(80-x) = 1600 ,
解得:x = 40 ,可得:80-x = 40 ,
即:购进甲种商品 40 件,乙种商品 40 件。
(2)
甲、乙两种商品的总利润是 (15-10)x+(40-30)(80-x) 元,
可列不等式:600 ≤ (15-10)x+(40-30)(80-x) ≤ 610 ,
解得:38 ≤ x ≤ 40 ,
总利润 (15-10)x+(40-30)(80-x) = 800-5x ,则要获得最大利润,需要 x 尽量小;
取 x = 38 ,则 80-x = 42 ;
即:购进甲种商品 38 件,乙种商品 42 件,超市可获得最大利润。
(1)
购进甲、乙两种商品一共需要 10x+30(80-x) 元,
可列方程:10x+30(80-x) = 1600 ,
解得:x = 40 ,可得:80-x = 40 ,
即:购进甲种商品 40 件,乙种商品 40 件。
(2)
甲、乙两种商品的总利润是 (15-10)x+(40-30)(80-x) 元,
可列不等式:600 ≤ (15-10)x+(40-30)(80-x) ≤ 610 ,
解得:38 ≤ x ≤ 40 ,
总利润 (15-10)x+(40-30)(80-x) = 800-5x ,则要获得最大利润,需要 x 尽量小;
取 x = 38 ,则 80-x = 42 ;
即:购进甲种商品 38 件,乙种商品 42 件,超市可获得最大利润。
展开全部
解:(1)设甲商品进了x件,则乙种商品进了80-x件,依题意得10x+(80-x)×30=1600,
解得:x=40,
即甲种商品进了40件,乙种商品进了80-40=40件.
(2)设购买甲种商品为x件,则购买乙种商品为(80-x)件,依题意可得:600≤(15-10)x+(40-30)(80-x)≤610,
解得:38≤x≤40.
即有三种方案,分别为甲38件,乙42件或甲39件,乙41件或甲40件,乙40件.
解得:x=40,
即甲种商品进了40件,乙种商品进了80-40=40件.
(2)设购买甲种商品为x件,则购买乙种商品为(80-x)件,依题意可得:600≤(15-10)x+(40-30)(80-x)≤610,
解得:38≤x≤40.
即有三种方案,分别为甲38件,乙42件或甲39件,乙41件或甲40件,乙40件.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1)设甲商品x件。乙商品就是80-x件。10x+30*(80-x)=1600。解得x=40,甲商品40件,乙商品40件。
(2)设甲商品y件,乙商品就是80-y件。600<(15-10)*x+(40-30)*(80-x)<610,解得x=39时,符合题意,甲商品39件,乙商品41件
设购买甲种商品为x件,则购买乙种商品为(80-x)件,依题意可得:
600≤(15-10)x+(40-30)(80-x)≤610
解得: 38≤x≤40
即有三种方案,分别为甲38件,乙42件或甲39件,乙41件或甲40件,乙40件
(1)解:设甲商品x件,乙商品y件。
10x+30y=1600 x=40
x+y=80 y=40
(2)设购买甲种商品为x件,则购买乙种商品为(80-x)件,依题意可得:
600≤(15-10)x+(40-30)(80-x)≤610
解得: 38≤x≤40
即有三种方案,分别为甲38件,乙42件或甲39件,乙41件或甲40件,乙40件。
(2)设甲商品y件,乙商品就是80-y件。600<(15-10)*x+(40-30)*(80-x)<610,解得x=39时,符合题意,甲商品39件,乙商品41件
设购买甲种商品为x件,则购买乙种商品为(80-x)件,依题意可得:
600≤(15-10)x+(40-30)(80-x)≤610
解得: 38≤x≤40
即有三种方案,分别为甲38件,乙42件或甲39件,乙41件或甲40件,乙40件
(1)解:设甲商品x件,乙商品y件。
10x+30y=1600 x=40
x+y=80 y=40
(2)设购买甲种商品为x件,则购买乙种商品为(80-x)件,依题意可得:
600≤(15-10)x+(40-30)(80-x)≤610
解得: 38≤x≤40
即有三种方案,分别为甲38件,乙42件或甲39件,乙41件或甲40件,乙40件。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1)
购进甲、乙两种商品一共需要 10x+30(80-x) 元,
可列方程:10x+30(80-x) = 1600 ,
解得:x = 40 ,可得:80-x = 40 ,
即:购进甲种商品 40 件,乙种商品 40 件。
购进甲、乙两种商品一共需要 10x+30(80-x) 元,
可列方程:10x+30(80-x) = 1600 ,
解得:x = 40 ,可得:80-x = 40 ,
即:购进甲种商品 40 件,乙种商品 40 件。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
满意回答 设购进甲种商品 x 件,则购进乙种商品 80-x 件。
(1)
购进甲、乙两种商品一共需要 10x+30(80-x) 元,
可列方程:10x+30(80-x) = 1600 ,
解得:x = 40 ,可得:80-x = 40 ,
即:购进甲种商品 40 件,乙种商品 40 件。
(2)
甲、乙两种商品的总利润是 (15-10)x+(40-30)(80-x) 元,
可列不等式:600 ≤ (15-10)x+(40-30)(80-x) ≤ 610 ,
解得:38 ≤ x ≤ 40 ,
总利润 (15-10)x+(40-30)(80-x) = 800-5x ,则要获得最大利润,需要 x 尽量小;
取 x = 38 ,则 80-x = 42 ;
即:购进甲种商品 38 件,乙种商品 42 件,超市可获得最大利润。
(1)
购进甲、乙两种商品一共需要 10x+30(80-x) 元,
可列方程:10x+30(80-x) = 1600 ,
解得:x = 40 ,可得:80-x = 40 ,
即:购进甲种商品 40 件,乙种商品 40 件。
(2)
甲、乙两种商品的总利润是 (15-10)x+(40-30)(80-x) 元,
可列不等式:600 ≤ (15-10)x+(40-30)(80-x) ≤ 610 ,
解得:38 ≤ x ≤ 40 ,
总利润 (15-10)x+(40-30)(80-x) = 800-5x ,则要获得最大利润,需要 x 尽量小;
取 x = 38 ,则 80-x = 42 ;
即:购进甲种商品 38 件,乙种商品 42 件,超市可获得最大利润。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询