求函数f(x)=x-cosx(sinx+cosx) x属于[-派/4, 3派/4]的最大值和最小值。急!!!
展开全部
f(x)=x-cosx(sinx+cosx)
=x-(1/2)*sin2x-(1/2)*cos2x-1/2
=x-1/2-(√2/2)*sin(2x+π/4)
则郑困慧求导可得f'(x)=1-√2cos(2x+π/4)
由于x∈[-π/4,3π/4],则2x+π/4∈[-π/4,7π/4],
所以当cos(2x+π/4)<√2/2,2x+π/4∈[π/4,7π/4]时,f'(x)>0,因此函数f(x)单调递增,
当cos(2x+π/4)>√2/2,2x+π/4∈[-π/4,π/尺液4]时,f'(x)<0,所以函数f(x)单调递减,
当2x+π/4=π/4时,即x=0时函数f(x)取最小值为0-1/2-1/2=-1,
当2x+π/4=7π/4时,即x=3π/4时函数f(x)取最大值喊答为3π/4-1/2+1/2=3π/4
此题求最大值和最小值得方法的关键是求导函数!!
=x-(1/2)*sin2x-(1/2)*cos2x-1/2
=x-1/2-(√2/2)*sin(2x+π/4)
则郑困慧求导可得f'(x)=1-√2cos(2x+π/4)
由于x∈[-π/4,3π/4],则2x+π/4∈[-π/4,7π/4],
所以当cos(2x+π/4)<√2/2,2x+π/4∈[π/4,7π/4]时,f'(x)>0,因此函数f(x)单调递增,
当cos(2x+π/4)>√2/2,2x+π/4∈[-π/4,π/尺液4]时,f'(x)<0,所以函数f(x)单调递减,
当2x+π/4=π/4时,即x=0时函数f(x)取最小值为0-1/2-1/2=-1,
当2x+π/4=7π/4时,即x=3π/4时函数f(x)取最大值喊答为3π/4-1/2+1/2=3π/4
此题求最大值和最小值得方法的关键是求导函数!!
展开全部
f(x)=x-cosx(sinx+cosx)
=x-(1/2)sin2x-(1/2)cos2x-1/2
=x-1/2-(√2/2)sin(2x+π/4)
则f‘(x)=1-√2cos(2x+π/4)
由于x属于[-π/4,3π/4],则2x+π/4属于[-π/4,7π/4],
所以当cos(2x+π/4)<√2/2,2x+π/4属于[π/4,7π/4]时,f‘(x)>0,函数单调递增,
当cos(2x+π/4)>√2/2,2x+π/4属于[-π/4,π/4]时,f‘(x)<0,函数单调递减春顷,
即当2x+π/4=π/4时,x=0函数取最小扒租陆值为0-1/2-1/型缓2=-1,
即当2x+π/4=7π/4时,x=3π/4函数取最大值为3π/4-1/2+1/2=3π/4,
=x-(1/2)sin2x-(1/2)cos2x-1/2
=x-1/2-(√2/2)sin(2x+π/4)
则f‘(x)=1-√2cos(2x+π/4)
由于x属于[-π/4,3π/4],则2x+π/4属于[-π/4,7π/4],
所以当cos(2x+π/4)<√2/2,2x+π/4属于[π/4,7π/4]时,f‘(x)>0,函数单调递增,
当cos(2x+π/4)>√2/2,2x+π/4属于[-π/4,π/4]时,f‘(x)<0,函数单调递减春顷,
即当2x+π/4=π/4时,x=0函数取最小扒租陆值为0-1/2-1/型缓2=-1,
即当2x+π/4=7π/4时,x=3π/4函数取最大值为3π/4-1/2+1/2=3π/4,
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
f(x)=x-cosx(sinx+cosx)
=x-(1/2)sin2x-(1/2)cos2x-1/2
=x-1/2-(√2/2)sin(2x+π/4)
则f‘(x)=1-√2cos(2x+π/4)
由于x属于[-π/4,3π/4],则2x+π/4属于[-π/4,7π/4],
所以当cos(2x+π/4)<√2/2,2x+π/4属茄则于[π/4,7π/4]时,f‘(x)>0,函数单调递增,颤清棚
当cos(2x+π/4)>√2/2,2x+π/4属于[-π/4,π/4]时,f‘(x)<0,函数单调递减,
即当2x+π/4=π/4时,x=0函数取最正羡小值为0-1/2-1/2=-1,
即当2x+π/4=7π/4时,x=3π/4函数取最大值为3π/4-1/2+1/2=3π/4,
这种题直接根据三角公式化简啊,不懂追问哦
=x-(1/2)sin2x-(1/2)cos2x-1/2
=x-1/2-(√2/2)sin(2x+π/4)
则f‘(x)=1-√2cos(2x+π/4)
由于x属于[-π/4,3π/4],则2x+π/4属于[-π/4,7π/4],
所以当cos(2x+π/4)<√2/2,2x+π/4属茄则于[π/4,7π/4]时,f‘(x)>0,函数单调递增,颤清棚
当cos(2x+π/4)>√2/2,2x+π/4属于[-π/4,π/4]时,f‘(x)<0,函数单调递减,
即当2x+π/4=π/4时,x=0函数取最正羡小值为0-1/2-1/2=-1,
即当2x+π/4=7π/4时,x=3π/4函数取最大值为3π/4-1/2+1/2=3π/4,
这种题直接根据三角公式化简啊,不懂追问哦
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询