直角三角形 三边分别为345绕三边旋转一周分别形成三个几何体,求出它们的表面积和
4个回答
展开全部
表面积和如下:
1、以3为边旋转,得一个底面半径R=4,高H=3的圆锥,表面积=πR【根号(R^2+H^2)+R】=36π。
2、以4为边旋转,得一个底面半径R=3,高H=4的圆锥,表面积=πR【根号(R^2+H2^)+R】=24π。
3、以5为边旋转:
直角三角形ABC斜边上的高=圆锥的底半径=3*4/5=2.4。
圆锥底周长=π*2*2.4=4.8π。
侧面积=二个圆锥的侧面积之和:
=1/2*4.8π*3+1/2*4.8π*4
=16.8π=75.3982 +113.0973 +52.7788
圆锥组成
圆锥的高:圆锥的顶点到圆锥的底面圆心之间的最短距离叫做圆锥的高。
圆锥母线:圆锥的侧面展开形成的扇形的半径、底面圆周上任意一点到顶点的距离。
圆锥的侧面积:将圆锥的侧面沿母线展开,是一个扇形,这个扇形的弧长等于圆锥底面的周长,而扇形的半径等于圆锥的母线的长.圆锥的侧面积就是弧长为圆锥底面的周长×母线/2;没展开时是一个曲面。
圆锥有一个底面、一个侧面、一个顶点、一条高、无数条母线,且底面展开图为一圆形,侧面展开图是扇形。
展开全部
(1)以3为边旋转,得一个底面半径R=4,高H=3的圆锥 ,表面积=πR【根号(R^2+H^2)+R】=36π
(2)以4为边旋转,得一个底面半径R=3,高H=4的圆锥 ,表面积=πR【根号(R^2+H2^)+R】=24π
(3)以5为边旋转:
直角三角形ABC斜边上的高=圆锥的底半径=3*4/5=2.4
圆锥底周长=π*2*2.4=4.8π
侧面积=二个圆锥的侧面积之和.
=1/2*4.8π*3+1/2*4.8π*4
=16.8π =75.3982 +113.0973 +52.7788
(2)以4为边旋转,得一个底面半径R=3,高H=4的圆锥 ,表面积=πR【根号(R^2+H2^)+R】=24π
(3)以5为边旋转:
直角三角形ABC斜边上的高=圆锥的底半径=3*4/5=2.4
圆锥底周长=π*2*2.4=4.8π
侧面积=二个圆锥的侧面积之和.
=1/2*4.8π*3+1/2*4.8π*4
=16.8π =75.3982 +113.0973 +52.7788
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1)以3为边旋转,得一个底面半径R=4,高H=3的圆锥 ,表面积=πR【根号(R^2+H^2)+R】=36π
(2)以4为边旋转,得一个底面半径R=3,高H=4的圆锥 ,表面积=πR【根号(R^2+H2^)+R】=24π
(3)以5为边旋转:
直角三角形ABC斜边上的高=圆锥的底半径=3*4/5=2.4
圆锥底周长=π*2*2.4=4.8π
侧面积=二个圆锥的侧面积之和.
=1/2*4.8π*3+1/2*4.8π*4
=16.8π
(2)以4为边旋转,得一个底面半径R=3,高H=4的圆锥 ,表面积=πR【根号(R^2+H2^)+R】=24π
(3)以5为边旋转:
直角三角形ABC斜边上的高=圆锥的底半径=3*4/5=2.4
圆锥底周长=π*2*2.4=4.8π
侧面积=二个圆锥的侧面积之和.
=1/2*4.8π*3+1/2*4.8π*4
=16.8π
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
分别为:75.3982 113.0973 52.7788 表面积和就自己加吧,哈……
追问
什么意思
追答
你不是要三个几何体的表面积吗?那三个数就分别是了呀,加起来就是表面积和了。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询