
在三角形ABC中,AB=AC,AD,AE分别是角BAC和角BAC的外角的平分线,BE垂直于AE 求证DA垂直AE 式判断AB于DE是
1个回答
展开全部
证明:∠EAB=(1/2)∠BAF; ∠BAD=(1/2)∠BAC.则:
∠EAB+∠BAD=(1/2)*(∠BAF+∠BAC)=90度;,即∠EAD=90度,所以,DA⊥AE;
又AB=AC,AD平分∠BAC,则:∠ADB=90度;
又∠BEA=90度,故四边形ADBE为矩形,得AB=DE.(矩形对角线相等)
∠EAB+∠BAD=(1/2)*(∠BAF+∠BAC)=90度;,即∠EAD=90度,所以,DA⊥AE;
又AB=AC,AD平分∠BAC,则:∠ADB=90度;
又∠BEA=90度,故四边形ADBE为矩形,得AB=DE.(矩形对角线相等)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询