3个回答
展开全部
取AP、BP的中点,并连接EM、DM、FN、DN,根据直角三角形斜边中线性质易证得△DEM≌△FDN,即可得各角的关系.即可证得结论.
证明:取AP、BP的中点,并连接EM、DM、FN、DN,
据三角形中位线定理可得:
DM∥且=BN,DN∥且=AM,
∴∠AMD=∠BND,
∵M、N分别为直角三角形AEP、BFP斜边的中点,
∴EM=AM=DN,FN=BN=DM,
已知DE=DF,
∴△DEM≌△FDN(SSS),
∴∠EMD=∠FND,
∴∠AME=∠BNF,
∴△AME、△BNF为等腰三角
证明:取AP、BP的中点,并连接EM、DM、FN、DN,
据三角形中位线定理可得:
DM∥且=BN,DN∥且=AM,
∴∠AMD=∠BND,
∵M、N分别为直角三角形AEP、BFP斜边的中点,
∴EM=AM=DN,FN=BN=DM,
已知DE=DF,
∴△DEM≌△FDN(SSS),
∴∠EMD=∠FND,
∴∠AME=∠BNF,
∴△AME、△BNF为等腰三角
展开全部
取 PA 中点M , 取PB中点N
因为M、N分别是Rt△AEP和Rt△BFP斜边的中点,
所以,EM=AM,FN=BN
因为 DM 和 DN 是△PAB中位线
所以 DM‖BN,DM=BN,DN‖AM,DN=AM
以及 DM=BN=NP=NF, DN=AM=MP=ME
以及 ∠AMD=∠BND = ∠APB
又因为 DE=DF,所以 △DEM≌△FDN
对应角相等 , 则
∠EMD=∠FND
则∠AME=∠BNF
而△AME、△BNF均为等腰三角形
所以,∠PAE=∠PBF
因为M、N分别是Rt△AEP和Rt△BFP斜边的中点,
所以,EM=AM,FN=BN
因为 DM 和 DN 是△PAB中位线
所以 DM‖BN,DM=BN,DN‖AM,DN=AM
以及 DM=BN=NP=NF, DN=AM=MP=ME
以及 ∠AMD=∠BND = ∠APB
又因为 DE=DF,所以 △DEM≌△FDN
对应角相等 , 则
∠EMD=∠FND
则∠AME=∠BNF
而△AME、△BNF均为等腰三角形
所以,∠PAE=∠PBF
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
取AP、BP的中点,并连接EM、DM、FN、DN,根据直角三角形斜边中线性质易证得△DEM≌△FDN,即可得各角的关系.即可证得结论.
证明:取AP、BP的中点,并连接EM、DM、FN、DN,
据三角形中位线定理可得:
DM∥且=BN,DN∥且=AM,
∴∠AMD=∠BND,
∵M、N分别为直角三角形AEP、BFP斜边的中点,
∴EM=AM=DN,FN=BN=DM,
已知DE=DF,
∴△DEM≌△FDN(SSS),
∴∠EMD=∠FND,
∴∠AME=∠BNF,
∴△AME、△BNF为等腰三角形,
∴∠PAE=∠PBF.
证明:取AP、BP的中点,并连接EM、DM、FN、DN,
据三角形中位线定理可得:
DM∥且=BN,DN∥且=AM,
∴∠AMD=∠BND,
∵M、N分别为直角三角形AEP、BFP斜边的中点,
∴EM=AM=DN,FN=BN=DM,
已知DE=DF,
∴△DEM≌△FDN(SSS),
∴∠EMD=∠FND,
∴∠AME=∠BNF,
∴△AME、△BNF为等腰三角形,
∴∠PAE=∠PBF.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询