~~在线等在三棱锥S-ABC中,△ABC是边长为4的正三角形,平面SAC垂直平面ABC,SA=SC=2倍根号3,M、N分别为AB、SB
在三棱锥S-ABC中,△ABC是边长为4的正三角形,平面SAC垂直平面ABC,SA=SC=2倍根号3,M、N分别为AB、SB的中点.1)ac垂直sb(2)求二面角N-CM...
在三棱锥S-ABC中,△ABC是边长为4的正三角形,平面SAC垂直平面ABC,SA=SC=2倍根号3,M、N分别为AB、SB的中点.
1)ac垂直sb
(2)求二面角N-CM-B的大小
(3)求三棱锥B-CMN的体积
请用高一的知识解答 空间向量什么的就不要用了... 展开
1)ac垂直sb
(2)求二面角N-CM-B的大小
(3)求三棱锥B-CMN的体积
请用高一的知识解答 空间向量什么的就不要用了... 展开
4个回答
展开全部
1、作SP垂直平面ABC,P正好是AC中点
所以BP⊥AC,由三垂线定理ac垂直sb
2、作NQ⊥CM于Q CM=2根3 MN=根3 CN=3 可以证明三角形CMN为直角三角形
NQ=1.5
二面角N-CM-B的正弦=根2/1.5=2根2/3 角度为arcsin2根2/3
3、三棱柱SABC的体积=1/3*4根3*2根2=8根6/3
三棱锥B-CMN的体积是它的1/4,所以是2根6/3
晕.......................................................................
你连这个不会也不懂把?.
所以BP⊥AC,由三垂线定理ac垂直sb
2、作NQ⊥CM于Q CM=2根3 MN=根3 CN=3 可以证明三角形CMN为直角三角形
NQ=1.5
二面角N-CM-B的正弦=根2/1.5=2根2/3 角度为arcsin2根2/3
3、三棱柱SABC的体积=1/3*4根3*2根2=8根6/3
三棱锥B-CMN的体积是它的1/4,所以是2根6/3
晕.......................................................................
你连这个不会也不懂把?.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1、作SP垂直平面ABC,P正好是AC中点
所以BP⊥AC,由三垂线定理ac垂直sb
2、作NQ⊥CM于Q CM=2根3 MN=根3 CN=3 可以证明三角形CMN为直角三角形
NQ=1.5
二面角N-CM-B的正弦=根2/1.5=2根2/3 角度为arcsin2根2/3
3、三棱柱SABC的体积=1/3*4根3*2根2=8根6/3
三棱锥B-CMN的体积是它的1/4,所以是2根6/3
所以BP⊥AC,由三垂线定理ac垂直sb
2、作NQ⊥CM于Q CM=2根3 MN=根3 CN=3 可以证明三角形CMN为直角三角形
NQ=1.5
二面角N-CM-B的正弦=根2/1.5=2根2/3 角度为arcsin2根2/3
3、三棱柱SABC的体积=1/3*4根3*2根2=8根6/3
三棱锥B-CMN的体积是它的1/4,所以是2根6/3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1、作SP垂直平面ABC,P正好是AC中点
所以BP⊥AC,由三垂线定理ac垂直sb
2、作NQ⊥CM于Q CM=2根3 MN=根3 CN=3 可以证明三角形CMN为直角三角形
NQ=1.5
二面角N-CM-B的正弦=根2/1.5=2根2/3 角度为arcsin2根2/3
3、三棱柱SABC的体积=1/3*4根3*2根2=8根6/3
三棱锥B-CMN的体积是它的1/4,所以是2根6/3
回答者: sunshine_hust_ | 五级 | 2011-8-24 17:02
所以BP⊥AC,由三垂线定理ac垂直sb
2、作NQ⊥CM于Q CM=2根3 MN=根3 CN=3 可以证明三角形CMN为直角三角形
NQ=1.5
二面角N-CM-B的正弦=根2/1.5=2根2/3 角度为arcsin2根2/3
3、三棱柱SABC的体积=1/3*4根3*2根2=8根6/3
三棱锥B-CMN的体积是它的1/4,所以是2根6/3
回答者: sunshine_hust_ | 五级 | 2011-8-24 17:02
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询