有关抽象函数单调性判断
题目如下:已知函数f(x)对于任意实数x,y总有f(x)+f(y)=f(x+y),且当x大于0时,f(x)小于0.f(1)=-2/3.求证f(x)在R是减函数老师讲了一下...
题目如下:已知函数f(x)对于任意实数x,y总有f(x)+f(y)=f(x+y),且当x大于0时,f(x)小于0. f(1) = -2/3 .求证f(x)在R是减函数 老师讲了一下,没太懂,还望网络高人指点!省着我去问老师……快开学了,高一新人报到……
展开
1个回答
展开全部
例题:已知函数f(x)对任意x,y∈R均满足:f(x+y)=f(x)+f(y);f(1)=2;当且仅当x<0时,f(x)<0,
求:当-3≤x≤3时,求f(x)的最大值与最小值。
解:在方程f(x+y)=f(x)+f(y)中取x=0,y=0,可得f(0)=0,
取y=-x,可得f(x)=-f(-x),即函数f(x)是奇函数,
在f(x)的定义域R内任取x1,x2,使x1<x2,即x1-x2<0
则f(x1-x2)=f(x1)+f(-x2)=f(x1)-f(x2)<0,
故f(x)在定义域R内是单调递增函数,
因为f(1)=2,所以f(3)=f(2)+f(1)=f(1)+f(1)+f(1)=6,f(-3)=-f(3)=-6,
因为f(x)在定义域R内是单调递增函数,故
当-3≤x≤3,求f(x)的最大值为6,最小值-6
思路总结:
对于类似的题目,要想办法应用单调性的定义证明,
并且要从题目所给的条件深刻挖掘出有利的信息,
可能时可以使用导数方法证明单调性。 参考资料:思路总结为原创,例题与解答出自http://zhidao.baidu.com/question/260595588.html
求:当-3≤x≤3时,求f(x)的最大值与最小值。
解:在方程f(x+y)=f(x)+f(y)中取x=0,y=0,可得f(0)=0,
取y=-x,可得f(x)=-f(-x),即函数f(x)是奇函数,
在f(x)的定义域R内任取x1,x2,使x1<x2,即x1-x2<0
则f(x1-x2)=f(x1)+f(-x2)=f(x1)-f(x2)<0,
故f(x)在定义域R内是单调递增函数,
因为f(1)=2,所以f(3)=f(2)+f(1)=f(1)+f(1)+f(1)=6,f(-3)=-f(3)=-6,
因为f(x)在定义域R内是单调递增函数,故
当-3≤x≤3,求f(x)的最大值为6,最小值-6
思路总结:
对于类似的题目,要想办法应用单调性的定义证明,
并且要从题目所给的条件深刻挖掘出有利的信息,
可能时可以使用导数方法证明单调性。 参考资料:思路总结为原创,例题与解答出自http://zhidao.baidu.com/question/260595588.html
参考资料: 本人在另一问题的解答http://zhidao.baidu.com/question/311140889.html
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询