函数f(x)=lg(x^2-ax-1)在区间(1,正无穷)上是单调增函数,则a的取值范围?求解析
3个回答
展开全部
因为原函数在(1,正无穷)上是单调增函数,
所以x^2-ax-1在(1,正无穷)上必须是单调增函数,根据同增异减性。
因为x^2-ax-1在真数上所以必须大于0只要在x>1的时候大于0就好。
x=1的时候是可以代数式可以等于0.
并且开口向上,所以对称轴左边是减函数,对称轴右边是增函数。
题目需要取增函数的部分,再根据定义域是(1,正无穷)
也就是说,在(1,正无穷)上的必须是x^2-ax-1的增函数部分。
所以对称轴a/2<=1
分别解出a就完成了。
所以x^2-ax-1在(1,正无穷)上必须是单调增函数,根据同增异减性。
因为x^2-ax-1在真数上所以必须大于0只要在x>1的时候大于0就好。
x=1的时候是可以代数式可以等于0.
并且开口向上,所以对称轴左边是减函数,对称轴右边是增函数。
题目需要取增函数的部分,再根据定义域是(1,正无穷)
也就是说,在(1,正无穷)上的必须是x^2-ax-1的增函数部分。
所以对称轴a/2<=1
分别解出a就完成了。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
令g(x)=x^2-ax-1,当x属于(1,正无穷)时,g(x)>0即可。g(x)对称轴x=a/2,当a/2 <1时,g(1)>0;当a/2 >=1时由于其判别式大于零,故不成立,所以a/2 <1,g(1)>0即可。最终答案a<0
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询