已知a,b,c,d都是正实数,且a^4+b^4+c^4+d^4=4abcd.求证a=b=c=d
4个回答
展开全部
证明:∵a^4+b^4+c^4+d^4=(a^4+b^4)+(c^4+d^4)
又 a,b,c,d都是正实数
∴a^4+b^4+c^4+d^4=[(a^2)^2+(b^2)^2]+[(c^2)^2+(d^2)^2]
>=2a^2*b^2+2c^2*d^2=2[(ab)^2+(cd)^2]
>=2*2abcd=4abcd
当 a=b①,c=d,②ab=cd③ 时等号成立
又 a^4+b^4+c^4+d^4=4abcd ④
由①②③④得 a=b=c=d
∴a=b=c=d
又 a,b,c,d都是正实数
∴a^4+b^4+c^4+d^4=[(a^2)^2+(b^2)^2]+[(c^2)^2+(d^2)^2]
>=2a^2*b^2+2c^2*d^2=2[(ab)^2+(cd)^2]
>=2*2abcd=4abcd
当 a=b①,c=d,②ab=cd③ 时等号成立
又 a^4+b^4+c^4+d^4=4abcd ④
由①②③④得 a=b=c=d
∴a=b=c=d
展开全部
证明:(a^4+b^4+c^4+d^4)-4abcd=0
a^4+b^4-2a^2b^2+c^4+d^4-2c^2d^2+2(a^2b^2-2abcd+c^2d^2)=0
(a^2-b^2)^2+(c^2-d^2)^2+2(ab-cd)^2=0
因为a,b,c,d都是正实数
所以:①a=b
②c=d
③ab=cd
由①②③,可得a=b=c=d
a^4+b^4-2a^2b^2+c^4+d^4-2c^2d^2+2(a^2b^2-2abcd+c^2d^2)=0
(a^2-b^2)^2+(c^2-d^2)^2+2(ab-cd)^2=0
因为a,b,c,d都是正实数
所以:①a=b
②c=d
③ab=cd
由①②③,可得a=b=c=d
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:根据基本不等式
a^4+b^4≥2a^2b^2 ①
当且仅当a=b时取等号;
c^4+d^4≥2c^2d^2 ②
当且仅当c=d时取等号;
①+②得
a^4+b^4+c^4+d^4≥2a²b²+2c²d²③
又:a²b²+c²d²≥2abcd ④
当且仅当ab=cd时取等号,则把④×2代入③得:
a^4+b^4+c^4+d^4≥4abcd
当且仅当a=b且c=d且ab=cd
即a=b=c=d时取等号。
不懂,请追问,祝愉快O(∩_∩)O~
a^4+b^4≥2a^2b^2 ①
当且仅当a=b时取等号;
c^4+d^4≥2c^2d^2 ②
当且仅当c=d时取等号;
①+②得
a^4+b^4+c^4+d^4≥2a²b²+2c²d²③
又:a²b²+c²d²≥2abcd ④
当且仅当ab=cd时取等号,则把④×2代入③得:
a^4+b^4+c^4+d^4≥4abcd
当且仅当a=b且c=d且ab=cd
即a=b=c=d时取等号。
不懂,请追问,祝愉快O(∩_∩)O~
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
a,b,c,d都是正实数,且a^4+b^4+c^4+d^4=4abcd
a^4+b^4≥2√(a^4×b^4)=2a²b²(当且仅当a=b时成立)
c^4+d^4≥2√(c^4×d^4)=2c²d²(当且仅当c=d时成立)
2a²b²+2c²d²≥2√(2a²b²×2c²d²)=4abcd(当且仅当ab=cd时成立)
即a=b=c=d
a^4+b^4≥2√(a^4×b^4)=2a²b²(当且仅当a=b时成立)
c^4+d^4≥2√(c^4×d^4)=2c²d²(当且仅当c=d时成立)
2a²b²+2c²d²≥2√(2a²b²×2c²d²)=4abcd(当且仅当ab=cd时成立)
即a=b=c=d
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询