在三角形ABC中,角A,B,C所对的边分别是a,b,c,且1+tanA/tanB=2c/b,
1个回答
展开全部
解:∵1+tanA/tanB=2c/b
∴tanB+tanA=2tanB*c/b,
∵c/b=sinC/sinB
∴tanB+tanA
=2tanB*sinC/sinB
=2sinC/cosB
即tanB+tanA=2sinC/cosB
sinB*cosA+sinA*cosB=2sinC*cosA
sin(A+B)=2sinC*cosA,
∵sinC=sin(A+B), ∴sinC=2sinC*cosA,
∵sinC≠0
∴cosA=1/2>0(∴A是锐角)
∴A=π/3
sinB+sinC=sinB+sin(2π/3-B)
=(3/2)sinB+(√3/2)cosB
∴tanB+tanA=2tanB*c/b,
∵c/b=sinC/sinB
∴tanB+tanA
=2tanB*sinC/sinB
=2sinC/cosB
即tanB+tanA=2sinC/cosB
sinB*cosA+sinA*cosB=2sinC*cosA
sin(A+B)=2sinC*cosA,
∵sinC=sin(A+B), ∴sinC=2sinC*cosA,
∵sinC≠0
∴cosA=1/2>0(∴A是锐角)
∴A=π/3
sinB+sinC=sinB+sin(2π/3-B)
=(3/2)sinB+(√3/2)cosB
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询