已知函数f(x)=loga^x,记g(x)=f(x)[f(x)+f(2)-1],若g(x)在区间[1/2,2]上是增函数,求 a的取值范围
展开全部
f(x)=log a^x = (lg a) * x
g(x)=f(x) [ f(x) + f(2) - 1] = (lga)² x² + (2lga -1)lga * x
g '(x) = 2 (lga)² x + (2lga -1)lga
g '(x) ≥ 0 => x + (2lga -1) / (2lga) ≥ 0 => x ≥ 1/(2lga) -1
[1/2, 2] => 1/(2lga) -1 ≤ 1/2 => 1/lga ≤ 3
(1) a>1, lga ≥ 1/3 => a ≥ 10^(1/3)
(2) 0<a<1, lga ≤ 1/3 => 0<a<1
综上,a的取值范围:0<a<1 或 a ≥ 10^(1/3)
g(x)=f(x) [ f(x) + f(2) - 1] = (lga)² x² + (2lga -1)lga * x
g '(x) = 2 (lga)² x + (2lga -1)lga
g '(x) ≥ 0 => x + (2lga -1) / (2lga) ≥ 0 => x ≥ 1/(2lga) -1
[1/2, 2] => 1/(2lga) -1 ≤ 1/2 => 1/lga ≤ 3
(1) a>1, lga ≥ 1/3 => a ≥ 10^(1/3)
(2) 0<a<1, lga ≤ 1/3 => 0<a<1
综上,a的取值范围:0<a<1 或 a ≥ 10^(1/3)
展开全部
解:已知函数y=f(x)的图象与函数y=ax(a>0且a≠1)的图象关于直线y=x对称,
则f(x)=logax,记g(x)=f(x)[f(x)+f(2)-1]=(logax)2+(loga2-1)logax.
当a>1时,若y=g(x)在区间[1/2 ,2]上是增函数,y=logax为增函数,
令t=logax,t∈[loga1/2 ,loga2],要求对称轴(-loga2-1)/2 ≤loga1/2 ,矛盾;
当0<a<1时,若y=g(x)在区间[1/2 ,2]上是增函数,y=logax为减函数,令t=logax,t∈[loga1/2 ,loga2],要求对称轴(-loga2-1)/2 ≥loga1/2 ,
解得a≤1/2,所以实数a的取值范围是(0,1/2]故选D.
则f(x)=logax,记g(x)=f(x)[f(x)+f(2)-1]=(logax)2+(loga2-1)logax.
当a>1时,若y=g(x)在区间[1/2 ,2]上是增函数,y=logax为增函数,
令t=logax,t∈[loga1/2 ,loga2],要求对称轴(-loga2-1)/2 ≤loga1/2 ,矛盾;
当0<a<1时,若y=g(x)在区间[1/2 ,2]上是增函数,y=logax为减函数,令t=logax,t∈[loga1/2 ,loga2],要求对称轴(-loga2-1)/2 ≥loga1/2 ,
解得a≤1/2,所以实数a的取值范围是(0,1/2]故选D.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询