求二次函数解析式的三种方法

 我来答
甘李柚
2023-01-15 · TA获得超过864个赞
知道大有可为答主
回答量:8894
采纳率:99%
帮助的人:137万
展开全部

求二次函数解析式的三种方法如下:

在初中数学教材里,二次函数的解析式一般有以下三种基本形式:

1、一般式:y=ax2+bx+c(a≠0)。

2、顶点式:y=a(x-m)2+k(a≠0),其中顶点坐标为(m,k),对称轴为直线x=m。

3、交点式:y=a(x-x1)(x-x2)(a≠0),其中x1,x2是抛物线与x轴的交点的横坐标。

求二次函数的解析式的方法我们一般采用待定系数法,即将一个多项式表示成另一种含有待定系数的新的形式,这样就得到一个恒等式。然后根据恒等式的性质得出系数应满足的方程或方程组,其后通过解方程或方程组便可求出待定的系数,或找出某些系数所满足的关系式,这种解决问题的方法叫做待定系数法。

我们结合待定系数法和三种二次函数基本形式来确定函数关系式,一定要根据不同条件,设出恰当的解析式,具体如下:

1、若给出抛物线上任意三点,通常可设一般式y=ax2+bx+c(a≠0)来求解。

2、若给出抛物线的顶点坐标或对称轴或最值,通常可设顶点式y=a(x-m)2+k(a≠0)来求解。

3、若给出抛物线与x轴的交点或对称轴或与x轴的交点距离,通常可设交点式y=a(x-x1)(x-x2)(a≠0)来求解。

值得注意的是,用交点式来求二次函数的解析式,前提条件是二次函数与x轴有交点坐标。

求解二次函数解析式,典型例题分析1:

已知一个二次函数图象经过(-1,-3)、(2,12)和(1,1)三点,那么这个函数的解析式是_______。

解:将点(-1,-3)、(2,12)和(1,1)坐标代入y=ax2+bx+c,可得:

-3=a(-1)2+b(-1)+c

12=a·22+b·2+c

1=a·12+b·1+c

解得a=3,b=2,c=-4。

因此所求函数解析式为y=3x2+2x-4。

求出待定系数a,b,c,进而获得解析式y=ax2+bx+c.

解题反思:

已知二次函数图象上的三个点,可设其解析式为y=ax2+bx+c,将三个点的坐标代入,把问题转化为求解一个三元一次方程组,易得a=3,b=2,c=-4,故所求函数解析式为y=3x2+2x-4。

求解二次函数解析式,典型例题分析2:

已知二次函数的图象过(-1,-9)、(1,-3)和(3,-5)三点,求此二次函数的解析式。

解:设此二次函数的解析式为,由题意得:

-9=a(-1)2+b(-1)+c

-3=a·12+b·1+c

-5=a·32+b·3+c

解得a=-1,b=3,c=-5。

∴所求的二次函数的解析式为

求解二次函数解析式,典型例题分析3:

在平面直角坐标系中,顶点为A(1,﹣1)的抛物线经过点B(5,3),求抛物线的解析式。

解:(1)设抛物线的解析式为y=a(x﹣1)2﹣1,

将B点坐标代入函数解析式,得(5﹣1)2a﹣1=3,

解得a=0.25.

故抛物线的解析式为y=0.25(x﹣1)2﹣1.

求解二次函数解析式,典型例题分析4:

已知抛物线的顶点(-1,-2)且图象经过(1,10),求解析式。

解:设抛物线y=a(x-m)2+k,由题意得:

m=-1,k=-2

∴y=a(x+1)2-2

∵抛物线过点(1,10)

∴a(1+1)2-2=10

所以a=3

即解析式为y=3x2+6x+1.

求解二次函数解析式,典型例题分析5:

已知二次函数的图象与轴的交点为(-5,0),(2,0),且图象经过(3,-4),求解析式。

解:设所求解析式为y=a(x+5)(x-2)

∵图象经过(3,-4)

∴a(x+5)(x-2)=-4

∴a=-0.5

即:y=0.5(x+5)(x-2)

则所求解析式为y=-0.5x2-1.5x+5.

求解二次函数解析式,典型例题分析6:

已知抛物线y=-2x2+8x-9的顶点为A,若二次函数y=ax2+bx+c的图像经过A点,且与x轴交于B(0,0)、C(3,0)两点,试求这个二次函数的解析式。

解:∵二次函数y=ax2+bx+c的图像与x轴交于B(0,0)、C(3,0)两点

∴设二次函数的解析式为y=ax(x-3)

∵y=-2x2+8x-9的顶点为A(2,-1)。

∴将A点的坐标代入y=ax(x-3),

得到a=0.5

∴y=0.5x(x-3),

即y=0.5x2-1.5x.

记住二次函数的解析式一般有以下三种基本形式:

1、一般式:y=ax2+bx+c(a≠0)。

2、顶点式:y=a(x-m)2+k(a≠0),其中顶点坐标为(m,k),对称轴为直线x=m。

3、交点式:y=a(x-x1)(x-x2)(a≠0),其中x1,x2是抛物线与x轴的交点的横坐标。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式