高二数学课件充要条件

 我来答
达人方舟教育
2022-08-23 · TA获得超过5116个赞
知道大有可为答主
回答量:4785
采纳率:100%
帮助的人:237万
展开全部

  导语:充分必要条件也即充要条件,意思是说,如果能从命题p推出命题q,则也能从命题q推出命题p 。下面是我给大家整理的高二数学课件充要条件的内容,希望能给你带来帮助!

   高二数学课件充要条件

  课题: 充要条件

  一、课标要求:

  理解充分条件、必要条件与充要条件的意义,会判断充分条件、必要条件与充要条件.

   二、知识与方法回顾:

  1、充分条件、必要条件与充要条件的概念:

  2、从逻辑推理关系上看充分不必要条件、必要不充分条件与充要条件:

  3、从集合与集合之间关系上看充分条件、必要条件与充要条件:

  4、特殊值法:判断充分条件与必要条件时,往往用特殊值法来否定结论

  5、化归思想:

  “ ”表示p等价于q,等价命题可以进行相互转化,当我们要证明p成立时,就可以转化为证明q成立;

  这里要注意“原命题 逆否命题”、“逆命题 否命题”只是等价形式之一,对于条件或结论是不等式关系(否定式)的命题一般应用化归思想.

  6、数形结合思想:

  利用韦恩图(即集合的包含关系)来判断充分不必要条件,必要不充分条件,充要条件.

   三、基础训练:

  1、 设命题“若p则q”为假,而“若q则p”为真,则p是q的 ( )

  A.充分不必要条件 B.必要不充分条件

  C.充要条件 D.既不充分也不必要条件

  2、 设集合M,N为是全集U的两个子集,则 是 的 ( )

  A.充分不必要条件 B.必要不充分条件

  C.充要条件 D.既不充分也不必要条件

  3、 若 是实数,则“ ”是“ ”的 ( )

  A.充分不必要条件 B.必要不充分条件

  C.充要条件 D.既不充分也不必要条件

   四、例题讲解

  例1 已知实系数一元二次方程 ,下列结论中正确的是 ( )

  (1) 是这个方程有实根的充分不必要条件

  (2) 是这个方程有实根的必要不充分条件

  (3) 是这个方程有实根的充要条件

  (4) 是这个方程有实根的充分不必要条件

  A.(1)(3) B.(3)(4) C.(1)(3)(4) D.(2)(3)(4)

  例2 (1)已知h > 0,a,b∈R,设命题甲:“ ”,命题乙:“ 且 ” ,问甲是乙的 ( )

  (2)已知p:两条直线的斜率互为负倒数,q:两条直线互相垂直,则p是q的 ( )

  A.充分不必要条件 B.必要不充分条件

  C.充要条件 D.既不充分也不必要条件

  变式:a = 0是直线 与 平行的 条件;

  例3 如果命题p、q都是命题r的必要条件,命题s是命题r的充分条件,命题q是命题s

  的充分条件,那么命题p是命题q的 条件;命题s是命题q的 条件;命题r是命题q的 条件.

  例4 设命题p:4x-3 ≤ 1,命题q:x2-(2a+1)x+a(a+1) ≤ 0,若?p是?q的必要不充分条件,求实数a的取值范围;

  例5 设 是方程 的两个实根,试分析 是两实根 均大于1的什么条件?并给予证明.

   五、课堂练习

  1、设命题p:“ ”,命题q:“ ”,则p是q的 ( )

  A.充分不必要条件 B.必要不充分条件

  C.充要条件 D.既不充分也不必要条件

  2、给出以下四个命题:①“若p则q”;②“若?r则?q”;③ “若r则?s”;

  ④“若?s则q”;若它们都是真命题,则?p是s的 条件;

  3、是否存在实数p,使“ ”是“ ”的充分条件?若存在,求出p的取值范围;若不存在说明理由.

   六、课堂小结:

  七、后记:

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式