在平面直角坐标系XOY中,点A在X轴正半轴上,直线AB的倾斜角
展开全部
(1)首先由在Rt△AOB中,OA=3,AB=5,,求得OB的值,然后利用待定系数法即可求得二次函数的解析式;
(2)过点Q作QF⊥AO于点F,由△AQF∽△ABO,根据相似三角形的对应边成比例,借助于方程即可求得QF的长,然后即可求得△APQ的面积S与t之间的函数关系式;
(3)①分别从DE∥QB与PQ∥BO去分析,借助于相似三角形的性质,即可求得t的值;
②根据题意可知即OP=OD时,则列方程即可求得t的值.解答:解:(1)在Rt△AOB中,OA=3,AB=5,由勾股定理得OB= =4.
∴A(3,0),B(0,4).
设直线AB的解析式为y=kx+b.
∴ 解得
∴直线AB的解析式为 ;
(2)如图1,过点Q作QF⊥AO于点F.
∵AQ=OP=t,∴AP=3-t.
由△AQF∽△ABO,得 .
∴ = .
∴QF= t,
∴S= (3-t)• t,
∴S=- t2+ t;
(3)四边形QBED能成为直角梯形.
①如图2,当DE∥QB时,
∵DE⊥PQ,
∴PQ⊥QB,四边形QBED是直角梯形.
此时∠AQP=90°.
由△APQ∽△ABO,得 .
∴ = .
解得t= ;
②如图3,当PQ∥BO时,
∵DE⊥PQ,
∴DE⊥BO,四边形QBED是直角梯形.
此时∠APQ=90°.
由△AQP∽△ABO,得 .
即 = .
3t=5(3-t),
3t=15-5t,
8t=15,
解得t= ;
(4)t= 或t= .
(2)过点Q作QF⊥AO于点F,由△AQF∽△ABO,根据相似三角形的对应边成比例,借助于方程即可求得QF的长,然后即可求得△APQ的面积S与t之间的函数关系式;
(3)①分别从DE∥QB与PQ∥BO去分析,借助于相似三角形的性质,即可求得t的值;
②根据题意可知即OP=OD时,则列方程即可求得t的值.解答:解:(1)在Rt△AOB中,OA=3,AB=5,由勾股定理得OB= =4.
∴A(3,0),B(0,4).
设直线AB的解析式为y=kx+b.
∴ 解得
∴直线AB的解析式为 ;
(2)如图1,过点Q作QF⊥AO于点F.
∵AQ=OP=t,∴AP=3-t.
由△AQF∽△ABO,得 .
∴ = .
∴QF= t,
∴S= (3-t)• t,
∴S=- t2+ t;
(3)四边形QBED能成为直角梯形.
①如图2,当DE∥QB时,
∵DE⊥PQ,
∴PQ⊥QB,四边形QBED是直角梯形.
此时∠AQP=90°.
由△APQ∽△ABO,得 .
∴ = .
解得t= ;
②如图3,当PQ∥BO时,
∵DE⊥PQ,
∴DE⊥BO,四边形QBED是直角梯形.
此时∠APQ=90°.
由△AQP∽△ABO,得 .
即 = .
3t=5(3-t),
3t=15-5t,
8t=15,
解得t= ;
(4)t= 或t= .
长荣科机电
2024-10-27 广告
2024-10-27 广告
直角坐标机器人,作为深圳市长荣科机电设备有限公司的明星产品之一,以其高精度、高稳定性在自动化生产线上发挥着关键作用。该机器人采用直线电机或精密导轨驱动,能在电商平台Y、Z三个直角坐标轴上实现精准定位与运动控制,广泛应用于电子装配、包装、检测...
点击进入详情页
本回答由长荣科机电提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询