已知椭圆焦点坐标和曲线经过的一个点P,怎么求椭圆标准方程?
已知椭圆的两个焦点坐标是F1(-√3,0)F2(√3,0)并经过点p(√5,-√6)的椭圆标准方程...
已知椭圆的两个焦点坐标是F1(-√3,0)F2(√3,0)并经过点p(√5,-√6)的椭圆标准方程
展开
2011-09-12 · 知道合伙人教育行家
关注
展开全部
已知椭圆焦点坐标和曲线经过的一个点P,怎么求椭圆标准方程?
答:使用待定系数法.
即由已知椭圆焦点坐标,
设满足条件的椭圆标准方程.
再由条件:曲线经过一个点P,
则该点P的坐标应满足所设的椭圆标准方程,
把该点P的坐标代入所设的椭圆标准方程,
则可得到一个关于要待定的系数a,b的一个等式,记为方程(1);
再由已知的椭圆焦点坐标,
得到另一个关于要待定的系数a,b的等式,记为方程(2);
联立方程(1)和方程(2),
解方程组求得待定的系数a,b的平方的值(即可),
把求出的a,b的平方的值,代入所设的椭圆标准方程,
即为所求的椭圆的标准方程.
如:
已知椭圆的两个焦点坐标是F1(-√3,0)F2(√3,0)并经过点p(√5,-√6)的椭圆标准方程
解:由椭圆的两个焦点坐标是F1(-√3,0)F2(√3,0)
知椭圆的焦点在x轴上,
故应设椭圆的标准方程为:
x²/a²+y²/b²=1
由条件:椭圆经过点p(√5,-√6),得
5/a²+6/b²=1 (1)
再由已知椭圆的两个焦点坐标是F1(-√3,0)F2(√3,0),
和a,b,c满足的关系式:
c²=a²-b²
得a²-b²=(√3)²=3 (2)
联立方程(1)和方程(2),
解方程组求得待定的系数a,b的平方的值为:
b² =4+根号34=4+√34,b² =4-根号34=4-√34 <0.(舍去)
a²=c²+b²=3+b²=3+4+√34=7+√34.
代入所设的椭圆标准方程,
x²/a²+y²/b²=1
得所求的椭圆的标准方程为:
x²/(7+√34)+y²/(4+√34)=1.
答:使用待定系数法.
即由已知椭圆焦点坐标,
设满足条件的椭圆标准方程.
再由条件:曲线经过一个点P,
则该点P的坐标应满足所设的椭圆标准方程,
把该点P的坐标代入所设的椭圆标准方程,
则可得到一个关于要待定的系数a,b的一个等式,记为方程(1);
再由已知的椭圆焦点坐标,
得到另一个关于要待定的系数a,b的等式,记为方程(2);
联立方程(1)和方程(2),
解方程组求得待定的系数a,b的平方的值(即可),
把求出的a,b的平方的值,代入所设的椭圆标准方程,
即为所求的椭圆的标准方程.
如:
已知椭圆的两个焦点坐标是F1(-√3,0)F2(√3,0)并经过点p(√5,-√6)的椭圆标准方程
解:由椭圆的两个焦点坐标是F1(-√3,0)F2(√3,0)
知椭圆的焦点在x轴上,
故应设椭圆的标准方程为:
x²/a²+y²/b²=1
由条件:椭圆经过点p(√5,-√6),得
5/a²+6/b²=1 (1)
再由已知椭圆的两个焦点坐标是F1(-√3,0)F2(√3,0),
和a,b,c满足的关系式:
c²=a²-b²
得a²-b²=(√3)²=3 (2)
联立方程(1)和方程(2),
解方程组求得待定的系数a,b的平方的值为:
b² =4+根号34=4+√34,b² =4-根号34=4-√34 <0.(舍去)
a²=c²+b²=3+b²=3+4+√34=7+√34.
代入所设的椭圆标准方程,
x²/a²+y²/b²=1
得所求的椭圆的标准方程为:
x²/(7+√34)+y²/(4+√34)=1.
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询