在四边形ABCD中,∠ABC=∠ADC=90°,M、N分别是AC、BD的中点,求证:MN⊥BD

数学新绿洲
2011-09-14 · 初中高中数学解题研习
数学新绿洲
采纳数:13056 获赞数:76576

向TA提问 私信TA
展开全部
证明:连结BM,DM
在Rt△ABC中,点M是斜边AC的中点
则BM=AC/2
同理在Rt△ADC中,点M是斜边AC的中点,可得DM=AC/2
所以BM=DM
即△BDM是等腰三角形
又点N是等腰△BDM的底边BD的中点
所以MN⊥BD
2240853206
2011-09-24 · 贡献了超过221个回答
知道答主
回答量:221
采纳率:0%
帮助的人:47.2万
展开全部
利用等腰三角形的性质来证明!
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式