高数极限问题中的无穷小
高数极限中无穷小的定义是F(X)在X趋近于x0或无穷时极限为零,则称f(x)是x在这一过程的无穷小,但在之后的相关证明中,似乎又出现了定义特定符号为x趋近于x0时的无穷小...
高数极限中无穷小的定义是F(X)在X趋近于x0或无穷时极限为零,则称f(x)是x在这一过程的无穷小,但在之后的相关证明中,似乎又出现了定义特定符号为x趋近于x0时的无穷小,请问,按定义,无穷小不是只能指函数吗,为什么之后又可用特定符号(常数?)代称?谢谢!~
展开
4个回答
展开全部
表示听不懂你在说什么~~~~~ 不过, 无穷小是指一个变量在无限趋近零的一个过程,一个常数不能说是无穷小,但在许多情况中总是把一个趋向某个数的变量看成是一个常数。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
那个特定符号不是常数。。。。实质上也算个函数。。。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询