已知函数f(x)=ax^3+x^2+bx(其中常数a,b属于R),g(x)=f(x)+f'(x)是奇函数

1,求f(x)的表达式2,讨论g(x)的单调性,并求g(x)在区间[1,2]上的最大值与最小值要完整解题过程... 1,求f(x)的表达式
2,讨论g(x)的单调性,并求g(x)在区间[1,2]上的最大值与最小值
要完整解题过程
展开
dennis_zyp
2011-09-13 · TA获得超过11.5万个赞
知道顶级答主
回答量:4万
采纳率:90%
帮助的人:2亿
展开全部
1) f'(x)=3ax^2+2x+b
g(x)=f(x)+f'(x)=x^3+(3a+1)x^2+(b+2)x+b 为个奇函数,则偶次项系数需为0,即有:
3a+1=b=0, 因此有:a=-1/3, b=0
f(x)=-x^3/3+x^2
2) g(x)=x^3+2x
g'(x)=3x^2+2>0, 因此其为单调增函数
最小值为左端点g(1)=1+2=3
最大值为右端点g(2)=8+4=12
angelの小懒
2012-05-10
知道答主
回答量:4
采纳率:0%
帮助的人:6274
展开全部
1) f'(x)=3ax^2+2x+b
g(x)=f(x)+f'(x)=x^3+(3a+1)x^2+(b+2)x+b 为个奇函数,则偶次项系数需为0,即有:
3a+1=b=0, 因此有:a=-1/3, b=0
f(x)=-x^3/3+x^2
2) g(x)=x^3+2x
g'(x)=3x^2+2>0, 因此其为单调增函数
最小值为左端点g(1)=1+2=3
最大值为右端点g(2)=8+4=12
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式