1个回答
展开全部
方法1:展开法
当x ≤1时,|x-1|+|x-5| = 1-x+5-x = 6-2x,最小值在x=1处取得,最小值为4
当1<x<5时,|x-1|+|x-5| = x - 1+5-x = 4,最小值为4
当x≥5时,|x-1|+|x-5| = x-1+x-5 = 2x - 6,最小值在x=5时取得,最小值为4
所以|x-1|+|x-5|的最小值为4
只要a小于4,|x-1|+|x-5|>a 就恒成立
所以a的取值范围是 a<4
方法2:绝对值不等式法
|x-1|+|x-5| = |x-1|+|5-x| ≥ |x-1+5-x| = 4
所以|x-1|+|x-5| ≥ 4,即|x-1|+|x-5|的最小值为4
只要a小于4,|x-1|+|x-5|>a 就恒成立
所以a的取值范围是 a<4
当x ≤1时,|x-1|+|x-5| = 1-x+5-x = 6-2x,最小值在x=1处取得,最小值为4
当1<x<5时,|x-1|+|x-5| = x - 1+5-x = 4,最小值为4
当x≥5时,|x-1|+|x-5| = x-1+x-5 = 2x - 6,最小值在x=5时取得,最小值为4
所以|x-1|+|x-5|的最小值为4
只要a小于4,|x-1|+|x-5|>a 就恒成立
所以a的取值范围是 a<4
方法2:绝对值不等式法
|x-1|+|x-5| = |x-1|+|5-x| ≥ |x-1+5-x| = 4
所以|x-1|+|x-5| ≥ 4,即|x-1|+|x-5|的最小值为4
只要a小于4,|x-1|+|x-5|>a 就恒成立
所以a的取值范围是 a<4
参考资料: http://baike.baidu.com/view/1168016.htm
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询