2个回答
展开全部
解:连接BD
S=S△ABD+S△BCD=1/2*ab*ad*sinA+1/2bc*cd*sinC=4sinA+12sinC
∵A+C=180°
∴sinA=sinC
∴S=4sinA+12sinC=16sinA
在△ABD中:bd^2=ab^2+ad^2-2*ab*ad*cosA=20-16cosA
在△BCD中:bd^2=bc^2+cd^2-2bc*cd*cosC=52-48cosC
∴20-16 cosA=52-48cosC
∵A+C=180°
∴cosC=- cosA
∴cosA=-1/2
A=120°
∴S=16sin120°=8√3
S=S△ABD+S△BCD=1/2*ab*ad*sinA+1/2bc*cd*sinC=4sinA+12sinC
∵A+C=180°
∴sinA=sinC
∴S=4sinA+12sinC=16sinA
在△ABD中:bd^2=ab^2+ad^2-2*ab*ad*cosA=20-16cosA
在△BCD中:bd^2=bc^2+cd^2-2bc*cd*cosC=52-48cosC
∴20-16 cosA=52-48cosC
∵A+C=180°
∴cosC=- cosA
∴cosA=-1/2
A=120°
∴S=16sin120°=8√3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询