分部积分法求∫x^2sin^2xdx,∫In^2xdx要过程
展开全部
∫x²sin²x dx
=(1/2)∫x²(1-cos2x) dx
=(1/2)∫x² dx - (1/2)∫x²cos2x dx
=(1/2)(1/3)x³ - (1/2)(1/2)∫x² d(sin2x)
=(1/6)x³ - (1/4)x²sin2x + (1/4)∫sin2x*2x dx
=(1/6)x³ - (1/4)x²sin2x - (1/2)(1/2)∫x d(cos2x)
=(1/6)x³ - (1/4)x²sin2x - (1/4)xcos2x + (1/4)∫cos2x dx
=(1/6)x³ - (1/4)x²sin2x - (1/4)xcos2x + (1/8)sin2x + C
∫(lnx)² dx
=x(lnx)² - ∫x*2lnx*1/x dx
=x(lnx)² - 2∫lnx dx
=x(lnx)² - 2xlnx + 2∫x*1/x dx
=x(lnx)² - 2xlnx + 2x + C
=(1/2)∫x²(1-cos2x) dx
=(1/2)∫x² dx - (1/2)∫x²cos2x dx
=(1/2)(1/3)x³ - (1/2)(1/2)∫x² d(sin2x)
=(1/6)x³ - (1/4)x²sin2x + (1/4)∫sin2x*2x dx
=(1/6)x³ - (1/4)x²sin2x - (1/2)(1/2)∫x d(cos2x)
=(1/6)x³ - (1/4)x²sin2x - (1/4)xcos2x + (1/4)∫cos2x dx
=(1/6)x³ - (1/4)x²sin2x - (1/4)xcos2x + (1/8)sin2x + C
∫(lnx)² dx
=x(lnx)² - ∫x*2lnx*1/x dx
=x(lnx)² - 2∫lnx dx
=x(lnx)² - 2xlnx + 2∫x*1/x dx
=x(lnx)² - 2xlnx + 2x + C
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询