在三角形ABC中,AB=AC=2∠A=90度,取一块含45度的直角三角板,将45度角的顶点放在斜边BC中点O处顺时针方向

旋转(如图一)使45度角的两边与Rt三角形ABC的两边AB、AC分别交于点E、F(如图二)设BE=X,CF=Y(1)求y与x的函数解析式,并写出x的取值范围;(2)直角三... 旋转(如图一)使45度角的两边与Rt三角形ABC的两边AB、AC分别交于点E、F(如图二)设BE=X,CF=Y
(1)求y与x的函数解析式,并写出x的取值范围;
(2)直角三角形绕O点旋转的过程中,三角形OEF是否能成为等腰三角形?若能,求出三角形OEF为等腰三角形时的所有x值;若不能,请说明理由。
急急急急急急急急急急急急
展开
匿名用户
2011-09-25
展开全部
1)线段AE与CF之间有相等关系.
证明:连接AO.如图2,
∵AB=AC,点O为BC的中点,∠BAC=90°,
∴∠AOC=90°,∠EAO=∠C=45°,AO=OC.
∵∠EOF=90°,∠EOA+∠AOF=90°,∠COF+∠AOF=90°,
∴∠EOA=∠FOC.
∴△EOA≌△FOC,
∴AE=CF.
(2)①连接AO.
如图4,∵AB=AC,∠BAC=90°,
∴∠C=∠B=45°,
∴∠BEO+∠EOB=135°,
∵∠EOF=45°,
∴∠FOC+∠EOB=135°,
∴∠FOC=∠BEO,
∴△BEO∽△COF,
∴ .
在Rt△ABC中,BC= =2 ,点O为BC的中点,
∴BO=OC= .
∵BE=x,CF=y,
∴ ,即xy=2,
∴ .
取值范围是:1≤x≤2.
②△OEF能构成等腰三角形.
当F与A重合时,x=1,此时OE=EA(或OE=EF);
当E与A重合时,此时x=2,OA=OF(或EF=OF);
当E、F分别在A点的两边时,x= ,OE=OF,△OEF能构成等腰三角形.点评:本题主要考查旋转的性质、全等三角形的判定和性质、相似三角形的性质等知识点.
要注意的是旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.
匿名用户
2011-09-18
展开全部
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式