3个回答
展开全部
解题过程如下图:
单纯的讲概率密度没有实际的意义,它必须有确定的有界区间为前提。可以把概率密度看成是纵坐标,区间看成是横坐标,概率密度对区间的积分就是面积,而这个面积就是事件在这个区间发生的概率,所有面积的和为1。所以单独分析一个点的概率密度是没有任何意义的,它必须要有区间作为参考和对比。
扩展资料
1926年,奥地利物理学家薛定谔运用偏微分方程,建立了描述微观粒子运动的波动方程,即薛定谔方程。由薛定谔方程式的可知,对于一个质量为m,在势能为V的势场中运动的微粒来说,有一个与这个微粒运动相联系的波函数ψ,这个波函数就是薛定谔方程的一个合理的解,每一个解都与相应的常数E对应,就是微粒在这一运动状态的能量(或能级)。
|Ψ|2表示原子核外空间某点P(x,y,z)处电子出现的概率密度,即在该点处单位体积中电子出现的概率。用来表示概率密度的几何图形俗称电子云,电子云并非众多电子弥散在核外空间,而是电子在核外空间各处出现的概率密度的形象表现。
引用思考着sisi的回答:
答案见下图。
答案见下图。
展开全部
如果是让用公式法做这个题呢?
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询