高一数学,集合问题,详解。
已知集合M={x=3n,n∈Z},N={x|x=3n+1,n∈Z},P={x|x=3n-1,n∈Z},且a∈M,b∈N,c∈P,设d=a-b+c,则a。d属于mb。d属于...
已知集合M={x=3n,n∈Z},N={x|x=3n+1,n∈Z},P={x|x=3n-1,n∈Z},且a∈M,b∈N,c∈P,设d=a-b+c,则 a。d属于m b。d属于n c。d属于p
为什么不能设a=3n,b=3n+1,c=3n-1,,我是新手,,抱歉 展开
为什么不能设a=3n,b=3n+1,c=3n-1,,我是新手,,抱歉 展开
4个回答
2011-09-21 · 知道合伙人教育行家
关注
展开全部
选b
由题意知,a是3的倍数,b是÷3余1的数,c是除以3余2的数
所以a+c的和仍然是除以3余2的数,a+c的和再减去一个除以3余1的b,这差肯定是除以3余1的数
即差属于N
即d属于N
所以选b
或者这样:
由题意假设a=3x,b=3y+1,c=3z-1,(x,y,z∈Z)
则d=a-b+c=3x-3y+3z-2=3(x-y+z)-2=3(x-y+z-1)+1,
即d是除以3余1的数
所以d∈n
祝你开心
由题意知,a是3的倍数,b是÷3余1的数,c是除以3余2的数
所以a+c的和仍然是除以3余2的数,a+c的和再减去一个除以3余1的b,这差肯定是除以3余1的数
即差属于N
即d属于N
所以选b
或者这样:
由题意假设a=3x,b=3y+1,c=3z-1,(x,y,z∈Z)
则d=a-b+c=3x-3y+3z-2=3(x-y+z)-2=3(x-y+z-1)+1,
即d是除以3余1的数
所以d∈n
祝你开心
追问
为什么3(x-y+z)-2要转换成3(x-y+z-1)+1,,如果这样的话,同理,不还可以转换成3(x-y+z-2)+4之类的式子吗,,抱歉,请回答下
追答
因为给出的三个集合分别是3n,3n+1,3n-1的形式
那样转换是为了与已知的集合一致,与哪个一致就是属于哪个集合
明白吗
展开全部
可用特殊值发
a=3, b=4, c=2
则 d=1∈N,所以选B
如果要证明,可以按如下方法:
令a=3x,b=3y+1,c=3z-1,(x,y,z∈Z)
则d=a-b+c=3x-3y-1+3z-1=3(x-y+z)-2=3(x-y+z-1)+1,
所以d∈N 选B
a=3, b=4, c=2
则 d=1∈N,所以选B
如果要证明,可以按如下方法:
令a=3x,b=3y+1,c=3z-1,(x,y,z∈Z)
则d=a-b+c=3x-3y-1+3z-1=3(x-y+z)-2=3(x-y+z-1)+1,
所以d∈N 选B
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:令a=3x,b=3y+1,c=3z-1,(x,y,z∈Z)
则d=a-b+c=3x-3y+3z=3(x-y+z),
所以d∈m
选a。
则d=a-b+c=3x-3y+3z=3(x-y+z),
所以d∈m
选a。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
B对 ,d属于n
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询