如图,已知:梯形ABCD中,AD‖BC,AB⊥BC,AD=CD=5,AB=4,点P在BC上运动(点P不与B、C重合),点E在射线CD上,

∠APB=∠EPC.(1)当PE=CE,求BP的长;(2)当E在线段CD上时,设BP=x,DE=y,求y关于x的解析式,并写出定义域;(3)联结PD,以点A、P、D为定点... ∠APB=∠EPC.
(1)当PE=CE,求BP的长;
(2)当E在线段CD上时,设BP=x,DE=y,求y关于x的解析式,并写出定义域;
(3)联结PD,以点A、P、D为定点的三角形与△PCE相似,求BP.
展开
百度网友51f2f9f
2011-09-23 · TA获得超过1.1万个赞
知道小有建树答主
回答量:1024
采纳率:0%
帮助的人:411万
展开全部
解:(1)根据已知,得BC=8,∠APB=∠EPC
∵PE=CE∴∠EPC=∠C
∴∠APB=∠C
∴AP∥DC
∴PC=AD=5
∴BP=3
即BP=3时,PE=CE
(2)延长PE与AD的延长线交于点F,
∵BP=x∴PC=8-x,AF=2x
∵DE=y,DC=AD=5∴EC=5-y,DF=2x-5
∵AF∥BC
∴ DF/PC=DE/EC
即( 2x-5)/(8-x)=y/(5-y)
∴ y=5(2x-5)/(x+3)
∵点E在线段CD上
∴函数定义域为 5/2≤x<8
(3)∵AD∥BC∴∠DAP=∠APB,
∵∠APB=∠EPC∴∠DAP=∠EPC
若△APD与△PCE相似,则有如下两种情况:
(ⅰ)∠ADP=∠C时,
推出BP=2时,△APD∽△PEC;
(ⅱ)∠APD=∠C时
又∵∠ADP=∠DPC∴△APD∽△DCP
∴PD2=AD•PC
∵PD²=4²+(5-x)²
∴16+(5-x)²=5(8-x)
解得 x1,2=(5±√21)/2,经检验,均符合题意
故 x1,2=(5±√21)/2时,△APD∽△PCE;
∴当BP为2, (5±√21)/2时,△APD与△PCE相似.
匿名用户
2012-11-05
展开全部
不懂
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式