已知函数f(x)=sin(wx+φ)(w>0,-π/2≤≤π/2)的图像上的两个相邻的最高点和最低点两点间的距离为2√2
3个回答
展开全部
所以 f(x)=sin(πx-π/6)
两个相邻的最高点和最低点两点间的距离为2√2
因为最大值,最小值分别为1.
所以两点纵坐标的差为2
所以两点横坐标的差也为2
T=2
所以 w=π
f(x)=sin(πx+φ)
代入(2,- 1/2),
-1/2=sin(2π+φ)=sinφ
φ=-π/6
所以 f(x)=sin(πx-π/6)
两个相邻的最高点和最低点两点间的距离为2√2
因为最大值,最小值分别为1.
所以两点纵坐标的差为2
所以两点横坐标的差也为2
T=2
所以 w=π
f(x)=sin(πx+φ)
代入(2,- 1/2),
-1/2=sin(2π+φ)=sinφ
φ=-π/6
所以 f(x)=sin(πx-π/6)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2016-01-01
展开全部
题干不详,无法解答
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询