假定某垄断厂商的产品在两个分割的市场出售,产品成本函数和需求函数分别为:

假定某垄断厂商的产品在两个分割的市场出售,产品成本函数和需求函数分别为:TC=Q2+10Q,Q1=32-0.4P1,Q2=18-0.1P2(1)若两个市场实行差别价格,利... 假定某垄断厂商的产品在两个分割的市场出售,产品成本函数和需求函数分别为:TC=Q2+10Q,Q1=32-0.4P1,Q2=18-0.1P2
(1)若两个市场实行差别价格,利润最大化时两个市场的售价、销售量和利润各为多少?
(2)若两个市场只能卖同一价格,利润最大化时的售价、销售量和利润各为多少?
展开
 我来答
小胖雀666
2014-12-19
知道答主
回答量:4
采纳率:0%
帮助的人:5431
展开全部
答案解析:(1)在两个市场上实行差别价格的厂商实现利润最大化的原则是MR1=MR2=MR=MC。
已知Q1=32-0.4P1,即P1=80-2.5Q1,TR1=P1·Q1=80Q1-,则MR1=80-5Q1。
同理,Q2=18-0.1P2,即P2=180-10Q2,TR2=P2·Q2=180Q2-,则MR2=180-20Q2。
还知成本函数TC=Q2+10Q,则MC=20+10。
根据MR1=MC,得到80-5Q1=2Q+10,则Q1=14-0.4Q。
同理,根据MR2=MC,得到180-20Q2=2Q+20,则Q2=8.5-0.1Q。
由于Q=Q1+Q2,得到Q=15。
把Q=15代入Q1=14-0.4Q中,得到Q1=8,Q2=Q-Q1=7;
把Q1=8代入P1=80-2.5Q1中,得到P1=60;
把Q2=7代入P2=180-10Q2中,得到P2=110。
利润π=TR1+TR2-TC=P1·Q1+P2·Q2-Q2-10Q=875。
(2)若两个市场价格相等,即P=P1=P2。
已知Q1=32-0.4P1,Q2=18-0.1P2,
所以Q=50-0.5P,即P=100-2Q,则TR=100Q-2Q2,MR=100-4Q。
又从TC=Q2+10q,得MC=2Q+10。
利润最大化的条件是MR=MC,
即100-4Q=2Q+10,从而得到Q=15。
把Q=15代入P=100-2Q中,得到P=70。
利润π=TR-TC=PQ-(Q2-10)=675。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式