判断函数f(x)=x+1/x在区间(-1,0)上的单调性并给出证明
1个回答
展开全部
函数在区间(-1,0)上是减函数,证明如下:
证:
设定义域上-1<x1<x2<0
f(x2)-f(x1)
=x2+1/x2-x1-1/x1
=(x2-x1)-(x2-x1)/(x1x2)
=(x2-x1)[1-1/(x1x2)]
=(x2-x1)(x1x2-1)/(x1x2)
x2>x1 x2-x1>0
-1<x1<0 -1<x1x2<0
0<x1x2<1
x1x2-1<0
(x2-x1)(x1x2-1)/(x1x2)<0
f(x2)<f(x1)
函数是减函数。
证:
设定义域上-1<x1<x2<0
f(x2)-f(x1)
=x2+1/x2-x1-1/x1
=(x2-x1)-(x2-x1)/(x1x2)
=(x2-x1)[1-1/(x1x2)]
=(x2-x1)(x1x2-1)/(x1x2)
x2>x1 x2-x1>0
-1<x1<0 -1<x1x2<0
0<x1x2<1
x1x2-1<0
(x2-x1)(x1x2-1)/(x1x2)<0
f(x2)<f(x1)
函数是减函数。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询