如图,在△ABC中,AC=BC,∠ACB=90°,BD平分∠ABC,AE⊥BD交BD的延长线于E,求证:BD=2AE
如图,在△ABC中,AC=BC,∠ACB=90°,BD平分∠ABC,AE⊥BD交BD的延长线于E,求证:BD=2AE...
如图,在△ABC中,AC=BC,∠ACB=90°,BD平分∠ABC,AE⊥BD交BD的延长线于E,求证:BD=2AE
展开
1个回答
展开全部
【开始打错,修改一下】
证明:
过D点,作DF//AB,交BC于F,
∴∠ABD=∠BDF【内错角相等】
∵∠ABD=∠CBD【BD平分∠ABC】
∴∠FDB=∠FBD
∴DF=BF即⊿BDF是等腰三角形
过F点,作FG⊥BD于G,则DG=BG【等腰三角形底边高即中垂线】
∵∠CAB=∠CBF,DF//AB
∴DFBA是等腰梯形
∴AD=BF
∵∠EAD=90º-∠ADE,∠CBD =90º-∠CDB,∠ADE=∠CDB【对顶角】
∴∠EAD=∠CBD
又∵∠AED=∠FGB=90º【加上BF=AD,∠EAD=∠FBG】
∴⊿AED≌⊿BGF(AAS)
∴AE=BG
∵BD=2BG
∴BD=2AE
证明:
过D点,作DF//AB,交BC于F,
∴∠ABD=∠BDF【内错角相等】
∵∠ABD=∠CBD【BD平分∠ABC】
∴∠FDB=∠FBD
∴DF=BF即⊿BDF是等腰三角形
过F点,作FG⊥BD于G,则DG=BG【等腰三角形底边高即中垂线】
∵∠CAB=∠CBF,DF//AB
∴DFBA是等腰梯形
∴AD=BF
∵∠EAD=90º-∠ADE,∠CBD =90º-∠CDB,∠ADE=∠CDB【对顶角】
∴∠EAD=∠CBD
又∵∠AED=∠FGB=90º【加上BF=AD,∠EAD=∠FBG】
∴⊿AED≌⊿BGF(AAS)
∴AE=BG
∵BD=2BG
∴BD=2AE
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询