已知函数f(x)=x^2+2x+a/x,x∈[1,+∞)

(1)当a=1/2是,求f(x)的最小值(2)若对于任意x∈[1,+∞),f(x)>0恒成立,试求实数a的取值范围... (1)当a=1/2是,求f(x)的最小值
(2)若对于任意x∈[1,+∞),f(x)>0恒成立,试求实数a的取值范围
展开
柳絮lb
2011-10-04 · TA获得超过2445个赞
知道小有建树答主
回答量:496
采纳率:0%
帮助的人:344万
展开全部
(1).f(x)=(x^2+2x+a)/x=x+a/x +2
a=1/2 f(x)=x+1/2x+2 为对钩函数

当x=根号a时 f(x)min=2+根号2

(2). f(x)=(x^2+2x+a)/x=x+a/x +2

f(x)>0

x+a/x>-2
当a>=0时
f(x)是对钩函数 最小值是 x=√a 时
即 2√a >-2 因为√a >0 所以a∈[0,正无穷)时均成立

当a<0时

f(x)是一个增函数 最小值是x=1时
1+a>-2

所以a>-3 所以a∈(-3,0)

所以综上所述 a∈(-3,正无穷)

或者

因为f(x)=(x^2+2x+a)/x,x∈[1,正无穷)
f(x)>0
x^2+2x+a>0即可
(x+1)^+a-1>0

此时此函数满足x最小时成立即都可成立

x=1时 4+a-1>0

a>-3
追问
(1)中“x=根号a时”即x=根号2/2<1啊,x不是大于等于1么
追答
对不起啊,打错了
(1)a=1/2时f(x)=x^2+2x+a/x=x+2+(1/2x)
当x∈[1,+∞)时f′(x)=1-1/2x^2≥0,
f(x)在[1,+∞) 是增函数,f(x)的最小值为f(1)=7/2
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式