高数可积与连续,间断点之间的关系。

首先可能我的表述有不对的地方,望高手指正。而且有些问题可能显得幼稚。也望能够耐心解释一下。谢谢了。1。不定积分的可积和存在原函数有什么关系?2。不定积分和定积分有什么本质... 首先可能我的表述有不对的地方,望高手指正。而且有些问题可能显得幼稚。也望能够耐心解释一下。谢谢了。1。不定积分的可积和存在原函数有什么关系?2。不定积分和定积分有什么本质区别?有什么关系?3。李永乐的书说函数有第一类间断点的不存在原函数。对吧?那么第二类间断点的是可能可积的还是一定可积的?4。后边定积分里说函数是在区间ab有有限个间断点的有界函数也可以积分,对吧?那么,此处的间断点分类型么?包含无穷间断点么?如果包含的话,函数可以说是有界函数么?还是这里的间断点就特指是第一类间断点??5。变上限积分问题。上限是x,下限是无穷。可以认为是变上限积分,可以直接求导么?正负无穷在定积分里是可以算作一个常数的么?如果一个二重积分,先对y负无穷到一个常数积分,再对x负无穷到另一个常数b积分。是不是可以直接把他们当作两个一重积分求,然后相乘??二重积分可以化为两个一重积分之积的条件又有哪些呢?谢谢了。。问题有些多。希望高手指点下。提醒一下。回答希望不要自相矛盾。分不多了。。只有八十多。回答满意再把剩下的送啦。
谢谢一楼的回答。但是你的回答有很多矛盾的地方。晚上我再附上细节。
细节如下。一楼。
1.你认为一个函数存在原函数和可以被不定积分是等价的。这我有些怀疑。你下面又说第一类间断点存在原函数。我想这是错误的。
2.定积分的几何意义是面积。我想这是你失误打错的。
3。第二类间断点不可积分。这是你的观点。我需要一些解释和你观点所来的参考。谢谢。麻烦了。书上说函数有有限个间断点是可以定积分的。但是并未强调是第一类还是第二类间断点。我个人觉得第二类间断点比如无穷间断点,这样的函数是无界的。定积分的必要条件都不满足,何以积分。
4。你说可以直接求导,又附加了一个条件,说是只要无穷时有极限即可。这不矛盾么?呵呵。。变上限积分直接求导后相当于原函数的导数。需要多次一举先判断极限么?
5.二重积分有的是可以相乘的。只要积分域上下限是常数。这样可以看作两个一重积分的乘积。你可以举例算一下。对于无穷是否可以算作常数这个问题你未给明确解释。
再次谢谢你的回答。希望互相探讨。
展开
百度网友ce8d01c
2011-10-05 · 知道合伙人教育行家
百度网友ce8d01c
知道合伙人教育行家
采纳数:20071 获赞数:87095
喜欢数学

向TA提问 私信TA
展开全部
1。不定积分的可积和存在原函数是等价的关系
2。不定积分和定积分有什么本质区别?有什么关系?
这个就是牛顿-莱布尼茨公式
3。李永乐的书说函数有第一类间断点的不存在原函数。对吧?
第一类间断点是可去间断点,添加一个可去点才连续,因此单独的这种函数,是不存在统一的原函数的,也有可能是分段的可积的
4。后边定积分里说函数是在区间ab有有限个间断点的有界函数也可以积分,对吧?那么,此处的间断点分类型么?包含无穷间断点么?如果包含的话,函数可以说是有界函数么?还是这里的间断点就特指是第一类间断点??
定积分就是求面积,只是代用了不定积分的计算公式。
最后一个问题是广义积分,也就是定积分中的一种,如果函数在-∞或+∞处存在值,那么就是可以求导的。
更多追问追答
追问
最后一个问题。我是在变上限积分里遇到的。而且书上的做法是将其看作变上限直接求导的。此处非讨论反常积分。最重要的第四个问题你没回答。定积分的间断点。包含第二类间断点么?但是定积分的必要条件是有界。那第二类间断点。我认为是无界的。对否?下面的问题你也没回答。。不过还是谢谢了。。对于第一个你的回答。我不是很明确。我觉得不等价。存在原函数和可以不定积分是不一样的。需要一个说服的理由。谢谢
追答
变上限积分里书上的做法是将其看作变上限直接求导的,这是因为那些积分是存在的,在-∞处或+∞处,所以可以看成是常数求导,变上限的就看成是普通函数求导。

定积分的间断点。包含第二类间断点么?但是定积分的必要条件是有界。那第二类间断点。我认为是无界的。对否

这种理解是正确的。如果无界的话,根据定积分的几何意义,这个定积分实际是不存在的。举个很简单的例子∫(0,x]1/xdx,这个积分就不可积的。
tiancaibenmiao
2011-10-05
知道答主
回答量:1
采纳率:0%
帮助的人:1704
展开全部
1.根据不定积分的定义,存在一个函数g ,它的导数是f ,则说g 是f的原函数。所以说原函数和不定积分存在是等价的。2.不定积分有几何意义,代表面积。根据牛顿来布尼兹公式,求定积分可先求其原函数。3.第一类间断点可以有原函数,只是原函数也是间断的,如f:x ,x属于大于0,f取1,x小于1。第二类间断点不可积,可积的函数有三类,不包括无界的函数,无穷函数是无界。5.可以直接求导,只要在无穷时有极限。对于二重积分不可以直接乘,可以化为两积分的条件是被积函数可化为两个单变量函数。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式