![](https://iknow-base.cdn.bcebos.com/lxb/notice.png)
函数f(x)=(ax+1)/(x+2)在区间(-2,+∞)上为增函数,则a的取值范围是?
展开全部
f(x)=(ax+1)/(x+2)
=[a(x+2)-2a+1]/(x+2)
=a+(1-2a)/(x+2).
令,Y=1/(x+2),
而此函数,在x∈(-2,+∞)上为减函数,
现要使Y=(1-2a)/(x+2),在x∈(-2,+∞)上为增函数,则须满足(1-2a)<0,
a>1/2.
即,函数f(x)=(ax+1)/(x+2)在区间(-2,+∞)上为增函数,则a的取值范围是:a>1/2.
=[a(x+2)-2a+1]/(x+2)
=a+(1-2a)/(x+2).
令,Y=1/(x+2),
而此函数,在x∈(-2,+∞)上为减函数,
现要使Y=(1-2a)/(x+2),在x∈(-2,+∞)上为增函数,则须满足(1-2a)<0,
a>1/2.
即,函数f(x)=(ax+1)/(x+2)在区间(-2,+∞)上为增函数,则a的取值范围是:a>1/2.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询