已知椭圆G的中心在坐标原点,长轴在x轴上,离心率为根号3/2,两个焦点分别为F1和F2,椭圆G上一点到F1和F2的
已知椭圆G的中心在坐标原点,长轴在x轴上,离心率为根号3/2,两个焦点分别为F1和F2,椭圆G上一点到F1和F2的距离之和为12.圆C(k):x^2+y^2+2kx-4y...
已知椭圆G的中心在坐标原点,长轴在x轴上,离心率为根号3/2,两个焦点分别为F1和F2,椭圆G上一点到F1和F2的距离之和为12.圆C(k):x^2+y^2+2kx-4y-21=0(k∈R)的圆心为点C(k)(1)求椭圆G的方程;(2)求△C(k)F1F2的面积;(3)是否存在圆C(k)包围椭圆G?说明理由
展开
展开全部
设椭圆方程为:x²/a²+y²/b²=1 (a>b>0,因)
e=√3/2,即:c/a=√3/2,(a²-b²)/a²=3/4,a²=4b²
第一种情况:P(0,3/2)在椭圆上
又由于椭圆中心在原点,且焦点在X轴上,点P(0,3/2)在椭圆上
所以b=3/2,b²=9/4,a²=9
椭圆方程为:x²/9 + y²/(9/4)=1
第二种情况:P(0,3/2)不在椭圆上(注:解出的b应该小于3/2)
x²/a²+y²/b²=1 ,即x²/4b²+y²/b²=1,x²+4y²=4b²,x²=4b²-4y²
设椭圆上距离P的最远点的坐标是(x,y),则有:
(x-0)²+(y-3/2)²,把x²=4b²-4y²代入,整理可得:
4b²-3(y²+y)+ (9/4),4b²是定值,-3(y²+y)是开口向下的二次函数,
显然最大值在y=-1/2处取得,为7,y=-1/2时,4b²-3(y²+y)+ (9/4)=7
解得:b²=1(符合b<3/2),a²=4b²=4
椭圆方程为:x²/4+ y²=1 回答者: 飞╁恋糊 | 四
e=√3/2,即:c/a=√3/2,(a²-b²)/a²=3/4,a²=4b²
第一种情况:P(0,3/2)在椭圆上
又由于椭圆中心在原点,且焦点在X轴上,点P(0,3/2)在椭圆上
所以b=3/2,b²=9/4,a²=9
椭圆方程为:x²/9 + y²/(9/4)=1
第二种情况:P(0,3/2)不在椭圆上(注:解出的b应该小于3/2)
x²/a²+y²/b²=1 ,即x²/4b²+y²/b²=1,x²+4y²=4b²,x²=4b²-4y²
设椭圆上距离P的最远点的坐标是(x,y),则有:
(x-0)²+(y-3/2)²,把x²=4b²-4y²代入,整理可得:
4b²-3(y²+y)+ (9/4),4b²是定值,-3(y²+y)是开口向下的二次函数,
显然最大值在y=-1/2处取得,为7,y=-1/2时,4b²-3(y²+y)+ (9/4)=7
解得:b²=1(符合b<3/2),a²=4b²=4
椭圆方程为:x²/4+ y²=1 回答者: 飞╁恋糊 | 四
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询