已知圆M的方程为x^2+(y-2)^2=1,直线l的方程为x-2y=0,点P在直线l上
(1)若P点的坐标为(2,1),过点P做直线与圆M交于CD两点当CD=根号2时求直线CD的方程(2)过点P做圆M的切线PA切点为A求证经过APM三点的圆必过顶点并求出所有...
(1)若P点的坐标为(2,1),过点P做直线与圆M交于C D两点 当CD=根号2时 求直线CD的方程(2)过点P做圆M的切线PA 切点为A 求证 经过A P M三点的圆 必过顶点 并求出所有定点的坐标
展开
展开全部
解:(1)设P(2m,m),由题可知MP=2,所以(2m)2+(m-2)2=4,解之得: 故所求点P的坐标为P(0,0)或 (8/5,4/5)..
(2)设直线CD的方程为:y-1=k(x-2),易知k存在,
由题知圆心M到直线CD的距离为 ,所以 ,
解得,k=-1或-1/7. ,故所求直线CD的方程为:x+y-3=0或x+7y-9=0.
(3)设P(2m,m),MP的中点 ,因为PA是圆M的切线
所以经过A,P,M三点的圆是以Q为圆心,以MQ为半径的圆,
故其方程为:化简得:x2+y2-2y-m(x+y-2)=0,此式是关于m的恒等式,
故 解得 或
所以经过A,P,M三点的圆必过定点(0,2)或(1,1).
(2)设直线CD的方程为:y-1=k(x-2),易知k存在,
由题知圆心M到直线CD的距离为 ,所以 ,
解得,k=-1或-1/7. ,故所求直线CD的方程为:x+y-3=0或x+7y-9=0.
(3)设P(2m,m),MP的中点 ,因为PA是圆M的切线
所以经过A,P,M三点的圆是以Q为圆心,以MQ为半径的圆,
故其方程为:化简得:x2+y2-2y-m(x+y-2)=0,此式是关于m的恒等式,
故 解得 或
所以经过A,P,M三点的圆必过定点(0,2)或(1,1).
展开全部
解:(1)设P(2m,m),由题可知MP=2,所以(2m)2+(m-2)2=4,解之得: 故所求点P的坐标为P(0,0)或 .
(2)设直线CD的方程为:y-1=k(x-2),易知k存在,
由题知圆心M到直线CD的距离为 ,所以 ,
解得,k=-1或 ,故所求直线CD的方程为:x+y-3=0或x+7y-9=0.
(3)设P(2m,m),MP的中点 ,因为PA是圆M的切线
所以经过A,P,M三点的圆是以Q为圆心,以MQ为半径的圆,
故其方程为:化简得:x2+y2-2y-m(x+y-2)=0,此式是关于m的恒等式,
故 解得 或
所以经过A,P,M三点的圆必过定点(0,2)或(1,1).
(2)设直线CD的方程为:y-1=k(x-2),易知k存在,
由题知圆心M到直线CD的距离为 ,所以 ,
解得,k=-1或 ,故所求直线CD的方程为:x+y-3=0或x+7y-9=0.
(3)设P(2m,m),MP的中点 ,因为PA是圆M的切线
所以经过A,P,M三点的圆是以Q为圆心,以MQ为半径的圆,
故其方程为:化简得:x2+y2-2y-m(x+y-2)=0,此式是关于m的恒等式,
故 解得 或
所以经过A,P,M三点的圆必过定点(0,2)或(1,1).
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:(1)设P(2m,m),由题可知MP=2,所以(2m)2+(m-2)2=4,解之得: 故所求点P的坐标为P(0,0)或 (8/5,4/5)..
(2)设直线CD的方程为:y-1=k(x-2),易知k存在,
由题知圆心M到直线CD的距离为 ,所以 ,
解得,k=-1或-1/7. ,故所求直线CD的方程为:x+y-3=0或x+7y-9=0.
(3)设P(2m,m),MP的中点 ,因为PA是圆M的切线
所以经过A,P,M三点的圆是以Q为圆心,以MQ为半径的圆,
故其方程为:化简得:x2+y2-2y-m(x+y-2)=0,此式是关于m的恒等式,
故 解得 或
所以经过A,P,M三点的圆必过定点(0,2)或(1,1).
(2)设直线CD的方程为:y-1=k(x-2),易知k存在,
由题知圆心M到直线CD的距离为 ,所以 ,
解得,k=-1或-1/7. ,故所求直线CD的方程为:x+y-3=0或x+7y-9=0.
(3)设P(2m,m),MP的中点 ,因为PA是圆M的切线
所以经过A,P,M三点的圆是以Q为圆心,以MQ为半径的圆,
故其方程为:化简得:x2+y2-2y-m(x+y-2)=0,此式是关于m的恒等式,
故 解得 或
所以经过A,P,M三点的圆必过定点(0,2)或(1,1).
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询