1个回答
2014-04-17
展开全部
n=k时,(1+1)(1+1/2)…(1-1/2^k)<=6(1-1/2^k),n=k+1时,(1+1)(1+1/2)…(1-1/2^k)(1-1/2^(k+1))<=6(1-1/2^k)(1-1/2^(k+1))=6[1-1/2^(k+1)-(1/2^k-1/2^(2k+1))]
(1/2^k-1/2^(2k+1))>0,故6[1-1/2^(k+1)-(1/2^k-1/2^(2k+1))]<6(1-1/2^(k+1)),即(1+1)(1+1/2)…(1-1/2^
k)(1-1/2^(k+1))<6(1-1/2^(k+1)),n=k+1时命题成立。
(1/2^k-1/2^(2k+1))>0,故6[1-1/2^(k+1)-(1/2^k-1/2^(2k+1))]<6(1-1/2^(k+1)),即(1+1)(1+1/2)…(1-1/2^
k)(1-1/2^(k+1))<6(1-1/2^(k+1)),n=k+1时命题成立。
追问
我的问题打错了!不好意思!(1+1)(1+1/2)…(1+1/2ⁿ)≤6(1-1/2ⁿ),n∈N*,求证
追答
前面是减号,到后面怎么变加号了
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询