移到一边,积分限内:
(x-π/2)f(sinx)
令x-π/2=p
pf(Cosp),P积分限为-π/2至π/2,p为奇函数,f(Cosp)为偶函数,pf(Cosp)为奇函数,对称区间中积分为0.
扩展资料
定积分与不定积分之间的关系:
若定积分存在,则它是一个具体的数值(曲边梯形的面积),而不定积分是一个函数表达式,它们仅仅在数学上有一个计算关系(牛顿-莱布尼茨公式)。
一个函数,可以存在不定积分,而不存在定积分;也可以存在定积分,而不存在不定积分。
一个连续函数,一定存在定积分和不定积分。
若只有有限个间断点,则定积分存在。
若有跳跃间断点,则原函数一定不存在,即不定积分一定不存在。