在等差数列中,试证明Sm=p,Sp=m,Sm+P=_(m+p)
1个回答
展开全部
a(n) = a + (n-1)d.
s(n) = na + n(n-1)d/2.
p = s(m) = ma + m(m-1)d/2. p^2 = mpa + mp(m-1)d/2.
m = s(p) = pa + p(p-1)d/2. m^2 = mpa + mp(p-1)d/2.
p^2 - m^2 = [mpa + mp(m-1)d/2] - [mpa + mp(p-1)d/2] = mpd/2(m-p) = (p-m)(p+m).
m不等于p时,
mpd/2 = -(p+m).
d/2 = -(p+m)/(mp).
p = ma + m(m-1)d/2 = ma - m(m-1)(p+m)/(mp) = ma - (m-1)(p+m)/p.
a = [p + (m-1)(p+m)/p]/m.
s(m+p)= (m+p)a + (m+p)(m+p-1)d/2
= (m+p)[p+(m-1)(p+m)/p]/m + (m+p)(m+p-1)[-(p+m)/(mp)]
= [(m+p)/(mp)][p^2 + (m-1)(p+m) - (m+p-1)(m+p)]
= [(m+p)/(mp)][p^2 + (p+m)(-p)]
= [(m+p)/(mp)](-mp)
= -(m+p)
s(n) = na + n(n-1)d/2.
p = s(m) = ma + m(m-1)d/2. p^2 = mpa + mp(m-1)d/2.
m = s(p) = pa + p(p-1)d/2. m^2 = mpa + mp(p-1)d/2.
p^2 - m^2 = [mpa + mp(m-1)d/2] - [mpa + mp(p-1)d/2] = mpd/2(m-p) = (p-m)(p+m).
m不等于p时,
mpd/2 = -(p+m).
d/2 = -(p+m)/(mp).
p = ma + m(m-1)d/2 = ma - m(m-1)(p+m)/(mp) = ma - (m-1)(p+m)/p.
a = [p + (m-1)(p+m)/p]/m.
s(m+p)= (m+p)a + (m+p)(m+p-1)d/2
= (m+p)[p+(m-1)(p+m)/p]/m + (m+p)(m+p-1)[-(p+m)/(mp)]
= [(m+p)/(mp)][p^2 + (m-1)(p+m) - (m+p-1)(m+p)]
= [(m+p)/(mp)][p^2 + (p+m)(-p)]
= [(m+p)/(mp)](-mp)
= -(m+p)
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询