如图所示,已知射线CB∥OA,∠C=∠OAB=100°,E、F在CB上,且满足∠FOB=∠AOB,OE平分∠COF.
如图所示,已知射线CB∥OA,∠C=∠OAB=100°,E、F在CB上,且满足∠FOB=∠AOB,OE平分∠COF.(1)求∠EOB的度数;(2)若平行移动AB,那么∠O...
如图所示,已知射线CB∥OA,∠C=∠OAB=100°,E、F在CB上,且满足∠FOB=∠AOB,OE平分∠COF.
(1)求∠EOB的度数;
(2)若平行移动AB,那么∠OBC:∠OFC的值是否随之变化?若变化,请找出规律;若不变,求出这个比值;
(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=∠OBA?若存在,求出其度数;若不存在,请说明理由。
http://zhidao.baidu.com/question/318176022.html 展开
(1)求∠EOB的度数;
(2)若平行移动AB,那么∠OBC:∠OFC的值是否随之变化?若变化,请找出规律;若不变,求出这个比值;
(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=∠OBA?若存在,求出其度数;若不存在,请说明理由。
http://zhidao.baidu.com/question/318176022.html 展开
4个回答
展开全部
:(1)∵CB∥OA,∠C=∠OAB=120°,
∴∠COA=180°-∠C=180°-120°=60°,
∵CB∥OA,
∴∠FBO=∠AOB,
又∵∠FOB=∠AOB,
∴∠FBO=∠FOB,
∴OB平分∠AOC,
又∵OE平分∠COF,
∴∠EOB=∠EOF+∠FOB= 12∠COA= 12×60°=30°;
(2)不变,
∵CB∥OA,则∠OBC=∠BOA,∠OFC=∠FOA,
则∠OBC:∠OFC=∠AOB:∠FOA,
又∵∠FOA=∠FOB+∠AOB=2∠AOB,
∴∠OBC:∠OFC=∠AOB:∠FOA=∠AOB:2∠AOB=1:2,
(3)存在,
∵CB∥OA,∠C=∠OAB=100°,
∴∠AOC=∠ABC=50°,
则四边形AOCB为平行四边形,
则∠OEC=∠EOB+∠AOB,∠OBA=∠BOC=∠COE+∠EOB,
又∵∠OEC=∠OBA,
则∠AOB=∠COE,
则∠COE=∠EOF=∠FOB=∠AOB=50°÷4=12.5°,
则∠EOB=2×12.5°=25°,
此时∠OEC=∠OBA=25°+12.5°=37.5°.
∴∠COA=180°-∠C=180°-120°=60°,
∵CB∥OA,
∴∠FBO=∠AOB,
又∵∠FOB=∠AOB,
∴∠FBO=∠FOB,
∴OB平分∠AOC,
又∵OE平分∠COF,
∴∠EOB=∠EOF+∠FOB= 12∠COA= 12×60°=30°;
(2)不变,
∵CB∥OA,则∠OBC=∠BOA,∠OFC=∠FOA,
则∠OBC:∠OFC=∠AOB:∠FOA,
又∵∠FOA=∠FOB+∠AOB=2∠AOB,
∴∠OBC:∠OFC=∠AOB:∠FOA=∠AOB:2∠AOB=1:2,
(3)存在,
∵CB∥OA,∠C=∠OAB=100°,
∴∠AOC=∠ABC=50°,
则四边形AOCB为平行四边形,
则∠OEC=∠EOB+∠AOB,∠OBA=∠BOC=∠COE+∠EOB,
又∵∠OEC=∠OBA,
则∠AOB=∠COE,
则∠COE=∠EOF=∠FOB=∠AOB=50°÷4=12.5°,
则∠EOB=2×12.5°=25°,
此时∠OEC=∠OBA=25°+12.5°=37.5°.
展开全部
解:(1)∵CB‖OA,
∴∠BOA+∠B=180°,
∴∠BOA=80°,
∵∠FOC=∠AOC,OE平分∠BOF,
∴∠EOC=∠EOF+∠FOC= 1/2∠BOF+ 1/2∠FOA= 1/2(∠BOF+∠FOA)= ×80°=40°;
(2)不变.
∵CB‖OA,
∴∠OCB=∠COA,∠OFB=∠FOA,
∵∠FOC=∠AOC,
∴∠COA= 1/2∠FOA,即∠OCB:∠OFB=1:2.
(3)在平行移动AC的过程中,存在∠OEB=∠OCA,且∠OCA=60°.
设∠OCA=α,∠AOC=x,
∵∠OEB=∠COE+∠OCB=40°+x,
∠ACO=80°-x,
∴α+x=80°,40°+x=α,
∴x=20°,α=60°.
∴∠BOA+∠B=180°,
∴∠BOA=80°,
∵∠FOC=∠AOC,OE平分∠BOF,
∴∠EOC=∠EOF+∠FOC= 1/2∠BOF+ 1/2∠FOA= 1/2(∠BOF+∠FOA)= ×80°=40°;
(2)不变.
∵CB‖OA,
∴∠OCB=∠COA,∠OFB=∠FOA,
∵∠FOC=∠AOC,
∴∠COA= 1/2∠FOA,即∠OCB:∠OFB=1:2.
(3)在平行移动AC的过程中,存在∠OEB=∠OCA,且∠OCA=60°.
设∠OCA=α,∠AOC=x,
∵∠OEB=∠COE+∠OCB=40°+x,
∠ACO=80°-x,
∴α+x=80°,40°+x=α,
∴x=20°,α=60°.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1)∵CB∥OA,∠C=∠OAB=120°,
∴∠COA=180°-∠C=180°-120°=60°,
∵CB∥OA,
∴∠FBO=∠AOB,
又∵∠FOB=∠AOB,
∴∠FBO=∠FOB,
∴OB平分∠AOC,
又∵OE平分∠COF,
∴∠EOB=∠EOF+∠FOB= 12∠COA= 12×60°=30°;
(2)不变,
∵CB∥OA,则∠OBC=∠BOA,∠OFC=∠FOA,
则∠OBC:∠OFC=∠AOB:∠FOA,
又∵∠FOA=∠FOB+∠AOB=2∠AOB,
∴∠OBC:∠OFC=∠AOB:∠FOA=∠AOB:2∠AOB=1:2,
(3)存在,
∵CB∥OA,∠C=∠OAB=100°,
∴∠AOC=∠ABC=50°,
则四边形AOCB为平行四边形,
则∠OEC=∠EOB+∠AOB,∠OBA=∠BOC=∠COE+∠EOB,
又∵∠OEC=∠OBA,
则∠AOB=∠COE,
则∠COE=∠EOF=∠FOB=∠AOB=50°÷4=12.5°,
则∠EOB=2×12.5°=25°,
此时∠OEC=∠OBA=25°+12.5°=37.5°.
∴∠COA=180°-∠C=180°-120°=60°,
∵CB∥OA,
∴∠FBO=∠AOB,
又∵∠FOB=∠AOB,
∴∠FBO=∠FOB,
∴OB平分∠AOC,
又∵OE平分∠COF,
∴∠EOB=∠EOF+∠FOB= 12∠COA= 12×60°=30°;
(2)不变,
∵CB∥OA,则∠OBC=∠BOA,∠OFC=∠FOA,
则∠OBC:∠OFC=∠AOB:∠FOA,
又∵∠FOA=∠FOB+∠AOB=2∠AOB,
∴∠OBC:∠OFC=∠AOB:∠FOA=∠AOB:2∠AOB=1:2,
(3)存在,
∵CB∥OA,∠C=∠OAB=100°,
∴∠AOC=∠ABC=50°,
则四边形AOCB为平行四边形,
则∠OEC=∠EOB+∠AOB,∠OBA=∠BOC=∠COE+∠EOB,
又∵∠OEC=∠OBA,
则∠AOB=∠COE,
则∠COE=∠EOF=∠FOB=∠AOB=50°÷4=12.5°,
则∠EOB=2×12.5°=25°,
此时∠OEC=∠OBA=25°+12.5°=37.5°.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(⊙o⊙)?
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询