如图所示,已知射线CB∥OA,∠C=∠OAB=120°,E、F在CB上,且满足∠FOB=∠AOB,OE平分∠COF.

如图所示,已知射线CB∥OA,∠C=∠OAB=120°,E、F在CB上,且满足∠FOB=∠AOB,OE平分∠COF.(1)求∠EOB的度数;(2)若平行移动AB,那么∠O... 如图所示,已知射线CB∥OA,∠C=∠OAB=120°,E、F在CB上,且满足∠FOB=∠AOB,OE平分∠COF.
(1)求∠EOB的度数;
(2)若平行移动AB,那么∠OBC:∠OFC的值是否随之变化?若变化,请找出规律;若不变,求出这个比值;
(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=∠OBA?若存在,求出其度数;若不存在,请说明理由。
http://zhidao.baidu.com/question/318176022.html
展开
易水寒322
2011-10-07 · TA获得超过616个赞
知道答主
回答量:95
采纳率:0%
帮助的人:84.7万
展开全部
:(1)∵CB∥OA,∠C=∠OAB=120°,
∴∠COA=180°-∠C=180°-120°=60°,
∵CB∥OA,
∴∠FBO=∠AOB,
又∵∠FOB=∠AOB,
∴∠FBO=∠FOB,
∴OB平分∠AOC,
又∵OE平分∠COF,
∴∠EOB=∠EOF+∠FOB= 12∠COA= 12×60°=30°;

(2)不变,
∵CB∥OA,则∠OBC=∠BOA,∠OFC=∠FOA,
则∠OBC:∠OFC=∠AOB:∠FOA,
又∵∠FOA=∠FOB+∠AOB=2∠AOB,
∴∠OBC:∠OFC=∠AOB:∠FOA=∠AOB:2∠AOB=1:2,

(3)存在,
∵CB∥OA,∠C=∠OAB=120°,
∴∠AOC=∠ABC=60°,
则四边形AOCB为平行四边形,
则∠OEC=∠EOB+∠AOB,∠OBA=∠BOC=∠COE+∠EOB,
又∵∠OEC=∠OBA,
则∠AOB=∠COE,
则∠COE=∠EOF=∠FOB=∠AOB=60°÷4=15°,
则∠EOB=2×15°=30°,
此时∠OEC=∠OBA=30°+15°=45°.
追问
∵CB∥OA,
∴∠FBO=∠AOB,
又∵∠FOB=∠AOB,
∴∠FBO=∠FOB
这什么用
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式