如图,P是△ABC的∠BAC的外角平分线上的一点。 (1)求证:PB+PC>AB+AC (2)若P是△ABC的∠BAC平分线上

如图,P是△ABC的∠BAC的外角平分线上的一点。(1)求证:PB+PC>AB+AC(2)若P是△ABC的∠BAC平分线上的一点且AC>AB,画出图形,试分析PB,PC,... 如图,P是△ABC的∠BAC的外角平分线上的一点。
(1)求证:PB+PC>AB+AC
(2)若P是△ABC的∠BAC平分线上的一点且AC>AB,画出图形,试分析PB,PC,AB,AC间又有如何不等关系?
展开
DCM苗
2011-10-15 · TA获得超过136个赞
知道答主
回答量:8
采纳率:0%
帮助的人:19.6万
展开全部
第一问:
在BA延长线上取一点D使AC=AD;
因为P在∠DAC的角平分线上,∴PD=PC。(可以用SAS证明)
∴PB+PC=PB+PD;AB+AC=AB+AD=BD;
比较等号右端,可知PB+PD>BD;
∴PB+PC>AB+AC
第一问证明完毕
第二问:
答案应该是PB+PC>AC-AB。方法同上,可在 延长线上取F使AF=AC,也可以在AC边上取G使AG=AB,构造出三角形后用上述方法求证即可。
不明白可追问(明天回答你,现在睡觉去(*^__^*) 嘻嘻)
llmono
2012-09-28 · TA获得超过1317个赞
知道小有建树答主
回答量:306
采纳率:0%
帮助的人:31.7万
展开全部
第一问:
在BA延长线上取一点D使AC=AD;
因为P在∠DAC的角平分线上,∴PD=PC。(可以用SAS证明)
∴PB+PC=PB+PD;AB+AC=AB+AD=BD;
比较等号右端,可知PB+PD>BD;
∴PB+PC>AB+AC
第一问证明完毕
第二问:
答案应该是PB+PC>AC-AB。方法同上,可在 延长线上取F使AF=AC,也可以在AC边上取G使AG=AB,构造出三角形后用上述方法求证即可。

参考资料: 借鉴别人的,希望别介意。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
心动的唯一
2012-07-16
知道答主
回答量:37
采纳率:0%
帮助的人:10.7万
展开全部

第二问;

 

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式