已知:如图,在△ABC中,AB=AC,AB的垂直平分线交AB于点N,交BC的延长线于点M,若∠A=40°.(1)求∠NMB

已知:如图,在△ABC中,AB=AC,AB的垂直平分线交AB于点N,交BC的延长线于点M,若∠A=40°.(1)求∠NMB的度数;(2)如果将(1)中∠A的度数改为70°... 已知:如图,在△ABC中,AB=AC,AB的垂直平分线交AB于点N,交BC的延长线于点M,若∠A=40°.(1)求∠NMB的度数;(2)如果将(1)中∠A的度数改为70°,其余条件不变,再求∠NMB的度数;(3)通过对(1)中和(2)中结果的分析,猜想∠NMB的度数与∠A的度数有怎样的等量关系?并证明你的结论;(4)若将(1)中的∠A改为钝角,在(3)中你猜想的结论是否仍然成立? 展开
 我来答
TX是个啥337
2014-08-28 · TA获得超过133个赞
知道答主
回答量:99
采纳率:0%
帮助的人:44.6万
展开全部
解答:(1)∵AB=AC,
∴∠B=∠ACB,
∴∠B=
1
2
(180°-∠A)=
1
2
(180°-40°)=70°,
∴∠NMB=90°-∠B=90°-70°=20°;

(2)解法同(1),可得∠NMB=35°;

(3)两者关系为:∠NMB的度数等于顶角∠A度数的一半,
证明:设∠A=α,
∵AB=AC,
∴∠B=∠C,
∴∠B=
1
2
(180°-∠A)=
1
2
(180°-α),
∵∠BNM=90°,
∴∠NMB=90°-∠B=90°-
1
2
(180°-α)=
1
2
α;

(4)将(1)中的∠A改为钝角,(3)中猜想的结论结论仍然成立.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式