如图甲,在△ABC中,ab=ac,AB的垂直平分线交AB于N,交BC的延长线于M,∠A=40° 求∠NMB
展开全部
解:(1)∵AB=AC,
∴∠B=∠ACB,
∴∠B=
12(180°-∠A)=
12(180°-40°)=70°,
∴∠NMB=90°-∠B=90°-70°=20°;
(2)∵AB=AC,
∴∠B=∠ACB,
∴∠B=
12(180°-∠A)=
12(180°-70°)=55°,
∴∠NMB=90°-∠B=90°-55°=35°;
(3)规律:∠NMB的度数等于顶角∠A度数的一半,
证明:∵AB=AC,
∴∠B=∠ACB,
∴∠B=12(180°-∠A),
∵∠BNM=90°,
∴∠NMB=90°-∠B=90°-12(180°-∠A)=12∠A,
即∠NMB的度数等于顶角∠A度数的一半;
(4)将(1)中的∠A改为钝角,这个规律不需要修改,
仍有等腰三角形一腰的垂直平分线与底边或底边的延长线相交所成的锐角等于顶角的一半.
∴∠B=∠ACB,
∴∠B=
12(180°-∠A)=
12(180°-40°)=70°,
∴∠NMB=90°-∠B=90°-70°=20°;
(2)∵AB=AC,
∴∠B=∠ACB,
∴∠B=
12(180°-∠A)=
12(180°-70°)=55°,
∴∠NMB=90°-∠B=90°-55°=35°;
(3)规律:∠NMB的度数等于顶角∠A度数的一半,
证明:∵AB=AC,
∴∠B=∠ACB,
∴∠B=12(180°-∠A),
∵∠BNM=90°,
∴∠NMB=90°-∠B=90°-12(180°-∠A)=12∠A,
即∠NMB的度数等于顶角∠A度数的一半;
(4)将(1)中的∠A改为钝角,这个规律不需要修改,
仍有等腰三角形一腰的垂直平分线与底边或底边的延长线相交所成的锐角等于顶角的一半.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
AB=AC则角ABC=角ACB因为角A=40度,所以角ABC=(180度-40度)/2=70度
因为角BNM=90度,所以角NMB=90度-70度=20度
若角A=70度,则角ABC=(180度-70度)/2=55度
同样因为角BNM=90度,所以角NMB=90度-55度=35度
因为角BNM=90度,所以角NMB=90度-70度=20度
若角A=70度,则角ABC=(180度-70度)/2=55度
同样因为角BNM=90度,所以角NMB=90度-55度=35度
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2012-09-09
展开全部
解:(1)∵AB=AC,
∴∠B=∠ACB,
∴∠B=12(180°-∠A)=12(180°-40°)=70°,
∴∠NMB=90°-∠B=90°-70°=20°;
(2)∵AB=AC,
∴∠B=∠ACB,
∴∠B=12(180°-∠A)=12(180°-70°)=55°,
∴∠NMB=90°-∠B=90°-55°=35°;
∴∠B=∠ACB,
∴∠B=12(180°-∠A)=12(180°-40°)=70°,
∴∠NMB=90°-∠B=90°-70°=20°;
(2)∵AB=AC,
∴∠B=∠ACB,
∴∠B=12(180°-∠A)=12(180°-70°)=55°,
∴∠NMB=90°-∠B=90°-55°=35°;
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
AB=AC则角ABC=角ACB因为角A=40度,所以角ABC=(180度-40度)/2=70度
因为角BNM=90度,所以角NMB=90度-70度=20度
若角A=70度,则角ABC=(180度-70度)/2=55度
同样因为角BNM=90度,所以角NMB=90度-55度=35度
因为角BNM=90度,所以角NMB=90度-70度=20度
若角A=70度,则角ABC=(180度-70度)/2=55度
同样因为角BNM=90度,所以角NMB=90度-55度=35度
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询