如图,在正方形ABCD中,点E在AB上,AE=3,BE=1,点P为对角线AC上任意一点,连结PB、PE。
6个回答
展开全部
在正方形ABCD中,点E在AB上,AE=3,BE=1,点P为对角线AC上任意一点,连结PB、PE。当点P在AC上何处时,PB+PE取得最小值?请画出此时点P的位置,并求PB+PE的最小值。
解:过E作EF⊥AC,垂足为F,并延长使之与AD相交于M,连接BM,则BM与AC的交点就是所要求的P;此时PE+PB=PM+PB=BM=5,是PB+PE的最小值。
证明:∵ABCD是正方形,AC是对角线,∴按上面的作图方法所得M与E 关于AC对称,即AC是EM
的垂直平分线,故PE=PM,于是PE+PB=PM+PB=BM;当F偏离现在的位置到 P₁时,BMP₁构成一个三角形,故必有P₁B+P₁M>BM.
BM是RT△ABM的斜边,AB=4,AM=3,故BM=5。
解:过E作EF⊥AC,垂足为F,并延长使之与AD相交于M,连接BM,则BM与AC的交点就是所要求的P;此时PE+PB=PM+PB=BM=5,是PB+PE的最小值。
证明:∵ABCD是正方形,AC是对角线,∴按上面的作图方法所得M与E 关于AC对称,即AC是EM
的垂直平分线,故PE=PM,于是PE+PB=PM+PB=BM;当F偏离现在的位置到 P₁时,BMP₁构成一个三角形,故必有P₁B+P₁M>BM.
BM是RT△ABM的斜边,AB=4,AM=3,故BM=5。
展开全部
由于点E、点B在AC同一旁,为了便于观察PB+PE的长度,利用对称把点E移到AC的另一边,该对称点不妨设为F;
有对称性质知,PB+PF=PB+PE
由两点间线段最短知,点F与点B之间的连线长度最短,即BF最短
解:以AC为对称轴作E的对称点F,则PB+PE=PB+PF=BF,且EF⊥AC于点P,此时PB+PE取得最小值,
∵四边形ABCD是正方形
∴点F在AB上,且AF=AE=3,则△AEF为等腰三角形
∴在Rt△AEF中,EF=3倍根号2
∴PE=3/2倍根号2
∵AC为在正方形ABCD的对角线
∴∠PAE=45°
又EF⊥AC
∴AP=PE=3/2倍根号2
即点P在AC距点A3/2倍根号2上
有对称性质知,PB+PF=PB+PE
由两点间线段最短知,点F与点B之间的连线长度最短,即BF最短
解:以AC为对称轴作E的对称点F,则PB+PE=PB+PF=BF,且EF⊥AC于点P,此时PB+PE取得最小值,
∵四边形ABCD是正方形
∴点F在AB上,且AF=AE=3,则△AEF为等腰三角形
∴在Rt△AEF中,EF=3倍根号2
∴PE=3/2倍根号2
∵AC为在正方形ABCD的对角线
∴∠PAE=45°
又EF⊥AC
∴AP=PE=3/2倍根号2
即点P在AC距点A3/2倍根号2上
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
PB+PE
最小 值为 5
在 AD 上 设 一点 E',使得AE‘ =3,E’D = 1,且AC与EE’交与 点F。
容易得知 △AEP 全等于 △AE‘P,即 EP = EP’
所以 PB+PE = PB+PE'
当P点在 AC 上移动时,形成 △BPE',此时 PB+PE‘ >BE' ,当 P与F重合时,PB+PE‘= BE'
而△ABE’是直角三角形 ,所以 BE‘ = 5
最小 值为 5
在 AD 上 设 一点 E',使得AE‘ =3,E’D = 1,且AC与EE’交与 点F。
容易得知 △AEP 全等于 △AE‘P,即 EP = EP’
所以 PB+PE = PB+PE'
当P点在 AC 上移动时,形成 △BPE',此时 PB+PE‘ >BE' ,当 P与F重合时,PB+PE‘= BE'
而△ABE’是直角三角形 ,所以 BE‘ = 5
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:以AC为对称轴作E的对称点F,则PB+PE=PB+PF=BF,且EF⊥AC于点P,此时PB+PE取得最小值,
∵四边形ABCD是正方形
∴点F在AB上,且AF=AE=3,则△AEF为等腰三角形
∴在Rt△AEF中,EF=3倍根号2
∴PE=3/2倍根号2
∵AC为在正方形ABCD的对角线
∴∠PAE=45°
又EF⊥AC
∴AP=PE=3/2倍根号2
即点P在AC距点A3/2倍根号2上
∵四边形ABCD是正方形
∴点F在AB上,且AF=AE=3,则△AEF为等腰三角形
∴在Rt△AEF中,EF=3倍根号2
∴PE=3/2倍根号2
∵AC为在正方形ABCD的对角线
∴∠PAE=45°
又EF⊥AC
∴AP=PE=3/2倍根号2
即点P在AC距点A3/2倍根号2上
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询