设A、B是n阶矩阵,且I+AB可逆,求证I+BA也可逆,且 (I+BA)^1=I-B(I+AB)^1A.

zssgdhr
2011-10-08 · TA获得超过5122个赞
知道大有可为答主
回答量:1100
采纳率:0%
帮助的人:548万
展开全部
因为I+AB可逆
所以(I+AB)(I+AB)^(-1)=I
(I+AB)^(-1)+AB(I+AB)^(-1)=I
B(I+AB)^(-1)+BAB(I+AB)^(-1)=B
(I+BA)[B(I+AB)^(-1)]=B
(I+BA)[B(I+AB)^(-1)]A=BA
(I+BA)[B(I+AB)^(-1)A]+I=BA+I
(I+BA)[I-B(I+AB)^(-1)A]=I
所以I+BA也可逆,且(I+AB)^(-1)=I-B(I+AB)^(-1)A
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式